Description

Input

Output

Sample Input

4 2
5 35 15 45
40 20 10 30

Sample Output

4

HINT

输入的2*n个数字保证全不相同。

还有输入应该是第二行是糖果,第三行是药片
首先$a_i>b_i$的情况数:
$k=\frac{n+k}{2}$
如果不能整除则无解
先按a,b排序
预处理出$l[i]$,表示$a_i$大于$b_j$的最大j
这样设f[i][j]表示当前a序列第i个数,有j组$a>b$的方案
使$a_i>b$有$l[i]$种方案,但是前面已经用了j-1
所以$f[i][j]=f[i-1][j]+f[i-1][j-1]*(l[i]-j+1)$
这样求出来的是“至少”有j对的方案数,而我们需要的是“恰好”有k对的方案数。
所以容斥
$ans=\sum_{i=k}^{n}(-1)^{i-k}*f[n][i]*C_i^{k}*(n-i)!$
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int a[],b[],n,k,Mod=1e9+,l[];
lol f[][],C[][],fac[],ans;
int main()
{int i,j;
cin>>n>>k;
if ((n+k)&)
{
cout<<;
return ;
}
k=(n+k)/;
fac[]=;
for (i=;i<=n;i++)
fac[i]=1ll*fac[i-]*i%Mod;
for (i=;i<=n;i++)
{
C[i][]=;
for (j=;j<=i;j++)
  C[i][j]=(C[i-][j-]+C[i-][j])%Mod;
}
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
for (i=;i<=n;i++)
{
scanf("%d",&b[i]);
}
sort(a+,a+n+);sort(b+,b+n+);
for (i=;i<=n;i++)
{
for (j=;j<=n;j++)
  if (a[i]>b[j]) l[i]++;
  else break;
}
for (i=;i<=n;i++)
{
f[i][]=;
for (j=;j<=i;j++)
  {
  f[i][j]=(f[i][j]+1ll*(l[i]-(j-))*f[i-][j-]%Mod)%Mod;
  f[i][j]=(f[i][j]+f[i-][j])%Mod;
  }
}
for (i=k;i<=n;i++)
{
if ((i-k)%==)
  ans+=1ll*f[n][i]*C[i][k]%Mod*fac[n-i]%Mod,ans%=Mod;
else ans-=1ll*f[n][i]*C[i][k]%Mod*fac[n-i]%Mod,ans=(ans+Mod)%Mod;
}
cout<<ans;
}

BZOJ3622 已经没有什么好害怕的了的更多相关文章

  1. [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理

    bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...

  2. bzoj3622已经没有什么好害怕的了

    bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...

  3. [BZOJ3622]已经没有什么好害怕的了(容斥DP)

    给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...

  4. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  5. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  6. BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...

  7. BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)

    显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...

  8. 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  9. 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了

    题目描述 给出 \(n\) 个数 \(a_i\)​ ,以及 \(n\) 个数 \(b_i\)​ ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...

随机推荐

  1. 设置linux虚拟机的固定ip、防火墙的一些操作

    安装好虚拟机后,需要设置其固定ip,这样才可以连接该虚拟服务器 设置步骤如下 1.进入network-scripts目录 cd /etc/sysconfig/network-scripts 2.编辑n ...

  2. 轻量级django 一

    from django.http import HttpResponse from django.conf.urls import url from django.conf import settin ...

  3. 【iOS】OC-时间转化的时区问题

    -(void)testTime{ NSDate *now = [NSDate date];//根据当前系统的时区产生当前的时间,绝对时间,所以同为中午12点,不同的时区,这个时间是不同的. NSDat ...

  4. 关于win10系统1709版本安装JDK出现变量配置正确但仍有“java不是内部或外部命令”的解决办法

    背景:联想拯救者R720笔记本,系统一键还原了,需要重新安装一部分软件,最基本的就是JDK,但今天在安装时遇到了问题,之前安装的1.8版本,没有仔细配置环境变量,这一次安装的是1.7版本的,仔仔细细配 ...

  5. Python内置函数(62)——exec

    英文文档: exec(object[, globals[, locals]]) This function supports dynamic execution of Python code. obj ...

  6. iot:下一步要做的工作

    1.DeviceMessage抽象(定义&支持扩展)2.createDeviceMessage.analyseDeviceMessage(支持扩展)3.日志打印4.错误处理5.断线重连6.交互 ...

  7. mosquitto安装和测试

    一.安装 1.windows安装 安装完毕,更新安装目录的dll文件 2.linux安装 编译保存用户数据到数据库的插件 安装 3.启动 mosquitto mosquitto mosquitto_p ...

  8. 新概念英语(1-15)Your passports please

    Is there a problem wtih the Customers officer? A:Are you Swedish? B:No. We are not. We are Danish. A ...

  9. RocketMQ(五):namesrv初探

    匠心零度 转载请注明原创出处,谢谢! RocketMQ网络部署图 NameServer:在系统中是做命名服务,更新和发现 broker服务. Broker-Master:broker 消息主机服务器. ...

  10. Linux系统的基本使用

    曾经在网上看到一个一篇文章,说到了Linux学习的入门与学习技巧,也就是:初学者可以自己安装虚拟机,然后把linux常用命令例如cd.ls.chmod.useradd.vi等等多练习几十遍,把自己敲打 ...