BZOJ3622 已经没有什么好害怕的了
Description
.jpg)
Input
.jpg)
Output
.jpg)
Sample Input
5 35 15 45
40 20 10 30
Sample Output
HINT
.jpg)
输入的2*n个数字保证全不相同。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int a[],b[],n,k,Mod=1e9+,l[];
lol f[][],C[][],fac[],ans;
int main()
{int i,j;
cin>>n>>k;
if ((n+k)&)
{
cout<<;
return ;
}
k=(n+k)/;
fac[]=;
for (i=;i<=n;i++)
fac[i]=1ll*fac[i-]*i%Mod;
for (i=;i<=n;i++)
{
C[i][]=;
for (j=;j<=i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%Mod;
}
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
for (i=;i<=n;i++)
{
scanf("%d",&b[i]);
}
sort(a+,a+n+);sort(b+,b+n+);
for (i=;i<=n;i++)
{
for (j=;j<=n;j++)
if (a[i]>b[j]) l[i]++;
else break;
}
for (i=;i<=n;i++)
{
f[i][]=;
for (j=;j<=i;j++)
{
f[i][j]=(f[i][j]+1ll*(l[i]-(j-))*f[i-][j-]%Mod)%Mod;
f[i][j]=(f[i][j]+f[i-][j])%Mod;
}
}
for (i=k;i<=n;i++)
{
if ((i-k)%==)
ans+=1ll*f[n][i]*C[i][k]%Mod*fac[n-i]%Mod,ans%=Mod;
else ans-=1ll*f[n][i]*C[i][k]%Mod*fac[n-i]%Mod,ans=(ans+Mod)%Mod;
}
cout<<ans;
}
BZOJ3622 已经没有什么好害怕的了的更多相关文章
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- bzoj3622已经没有什么好害怕的了
bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学
原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...
- BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)
显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...
- 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
- 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了
题目描述 给出 \(n\) 个数 \(a_i\) ,以及 \(n\) 个数 \(b_i\) ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...
随机推荐
- 设置linux虚拟机的固定ip、防火墙的一些操作
安装好虚拟机后,需要设置其固定ip,这样才可以连接该虚拟服务器 设置步骤如下 1.进入network-scripts目录 cd /etc/sysconfig/network-scripts 2.编辑n ...
- 轻量级django 一
from django.http import HttpResponse from django.conf.urls import url from django.conf import settin ...
- 【iOS】OC-时间转化的时区问题
-(void)testTime{ NSDate *now = [NSDate date];//根据当前系统的时区产生当前的时间,绝对时间,所以同为中午12点,不同的时区,这个时间是不同的. NSDat ...
- 关于win10系统1709版本安装JDK出现变量配置正确但仍有“java不是内部或外部命令”的解决办法
背景:联想拯救者R720笔记本,系统一键还原了,需要重新安装一部分软件,最基本的就是JDK,但今天在安装时遇到了问题,之前安装的1.8版本,没有仔细配置环境变量,这一次安装的是1.7版本的,仔仔细细配 ...
- Python内置函数(62)——exec
英文文档: exec(object[, globals[, locals]]) This function supports dynamic execution of Python code. obj ...
- iot:下一步要做的工作
1.DeviceMessage抽象(定义&支持扩展)2.createDeviceMessage.analyseDeviceMessage(支持扩展)3.日志打印4.错误处理5.断线重连6.交互 ...
- mosquitto安装和测试
一.安装 1.windows安装 安装完毕,更新安装目录的dll文件 2.linux安装 编译保存用户数据到数据库的插件 安装 3.启动 mosquitto mosquitto mosquitto_p ...
- 新概念英语(1-15)Your passports please
Is there a problem wtih the Customers officer? A:Are you Swedish? B:No. We are not. We are Danish. A ...
- RocketMQ(五):namesrv初探
匠心零度 转载请注明原创出处,谢谢! RocketMQ网络部署图 NameServer:在系统中是做命名服务,更新和发现 broker服务. Broker-Master:broker 消息主机服务器. ...
- Linux系统的基本使用
曾经在网上看到一个一篇文章,说到了Linux学习的入门与学习技巧,也就是:初学者可以自己安装虚拟机,然后把linux常用命令例如cd.ls.chmod.useradd.vi等等多练习几十遍,把自己敲打 ...