Why deep learning?
1. 深度学习中网络越深越好么?
理论上说是这样的,因为网络越深,参数也越多,拟合能力也越强(但实际情况是,网络很深的时候,不容易训练,使得表现能力可能并不好)。

2. 那么,不同什么深度的网络,在参数差不多大小的情况下,深的网络会比浅的网络表现能力好么?即深度较深的网络比较“瘦”,深度较浅的网络比较“胖”。

一般来说,相同参数下深度较深的网络表现能力也比深度较浅的网络要好。

3. 为什么深度较深的网络的表现能力要比深度较浅的网络要好?
1) 深层网络更加结构化,很多子结构都可以共用

每一层的神经元其实就是一个分类器,第一层的神经元是最基础的分类器,第二层神经元是比较复杂的分类器,它将第一层的output当做它的input,将第一层当做模块,第三层同理,将第二层当做一个模块。模块化的好处是让模型变得简单,有些模块可以共用,那么就可以减少参数。

2) 理论上来说,只包含一层隐含层的神经网络也可以拟合出任何函数,只要参数够多。

但是,深层的网络,我们可以使用更少的参数,更简单的方法,就可以实现相同的功能。与数字电路里的门电路类似,虽然二级门电路可以表示任何逻辑状态,但是,使用多级门电路可以是实现方法更简单,使用逻辑元器件更少。

4. 相关的一些资料

- • Do Deep Nets Really Need To Be Deep? (by Rich Caruana)
• http://research.microsoft.com/apps/video/default.aspx?id=
232373&r=1
• Deep Learning: Theoretical Motivations (Yoshua Bengio)
• http://videolectures.net/deeplearning2015_bengio_the
oretical_motivations/
• Connections between physics and deep learning
• https://www.youtube.com/watch?v=5MdSE-N0bxs
• Why Deep Learning Works: Perspectives from Theoretical
Chemistry
• https://www.youtube.com/watch?v=kIbKHIPbxiU
Big data与deep
learning的联系与区别
如果我们有足够多的数据,包含了世界上所以的数据,那么其实就不需要深度学习/机器学习算法了,我们只需要查表就可以了,即给定件事物,我们只需要从数据库中查找,就可以找出相关资料。但是实际上我们并没有足够多的数据,因此,我们需要深度学习/机器学习,需要从已知的、仅有的数据中学习一些共性,那么新的事物来了之后,我们就可以使用算法推测出该事物的一些情况。
参考:
【机器学习】李宏毅机器学习2017(台湾大学)(国语)(12)
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html
Why deep learning?的更多相关文章
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Deep Learning 26:读论文“Maxout Networks”——ICML 2013
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
随机推荐
- Idea中开启assert断言
先打开相应的配置面板,有以下两种方式. 然后在VM栏里输入 -enableassertions 或者 -ea 就好了 然后编写程序试试 我的目录结构如下:(因为Main class那里要写类的全限 ...
- Java注解学习笔记
我们平常写Java代码,对其中的注解并不是很陌生,比如说写继承关系的时候经常用到@Override来修饰方法.但是@Override是用来做什么的,为什么写继承方法的时候要加上它,不加行不行.如果对J ...
- 初识mango DB
换工作了,第一次接触到mango数据库,有点云里雾里,整理一篇最基本的增删该查语句 百度百科说mango DB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据 ...
- poj-1005-l tanink i need a houseboat
Description Fred Mapper is considering purchasing some land in Louisiana to build his house on. In t ...
- 关于bootstrap的form表单的输入框间距样式
<!-- 模态弹出窗内容 --> <div class="modal" tabindex="-1" role="dialog&quo ...
- PHP Session 常用的函数
我们在前面的文章里面讲到session的原理和最佳实践,感到意犹未尽.现在再来聊下PHP Session用到的几个相关的函数. session_start() session_start() 会创建新 ...
- java排序算法(五):快速排序
java排序算法(五):快速排序 快速排序是一个速度非常快的交换排序算法,它的基本思路很简单,从待排的数据序列中任取一个数据(如第一个数据)作为分界值,所有比它小的元素放到左边.所有比它大的元素放到右 ...
- Catch That Cow_bfs
Catch That Cow 题目大意:FrammerJohn找奶牛,给出n和k.FJ在n处.每次他可以向左移动一格.向右移动一格或者移动到自己当前格子数乘2的地方.求FJ最少移动多少次.其中,FJ和 ...
- php的错误日志级别 error_report(转)
; E_ALL 所有错误和警告(除E_STRICT外); E_ERROR 致命的错误.脚本的执行被暂停.; E_RECOVERABLE_ERROR 大多数的致命错误.; E_WARNING 非致命的运 ...
- 线程池与Python中的GIL
线程池是一个操作系统的概念,它是对多线程的一种优化. 多线程的时候,创建和销毁线程伴随着操作系统的开销,如果频繁创建/销毁线程,则会使效率大大降低. 而线程池,是先创建出一批线程放入池子里,需要创建线 ...