A question of details in the solution at the end of this post of the question is asked by me at MSE.

Nowadays, I learnt from Liu Ben a question asked in the interview of ENS.

Assume $m,n$ are two coprime odd numbers, consider the interval $[0,mn]$. We cut the interval by $m,2m,\ldots,(n-1)m$ and $n, 2n,\ldots, (m-1)n$ into $m+n-1$ pieces of small intervals. And we color them from left to right by black-and-white periodically and black first. The question is to show $$(\textrm{the length of black})-(\textrm{the length of white})=1$$

For example, if $m=3,n=5$, $$\begin{array}{c*{31}}0 &&&&&& 3 &&&&&& 6 &&&&&& 9 &&&&&& 12 &&&&&& 15 \\ \mid & \blacksquare && \blacksquare && \blacksquare &\mid & \square && \square & \mid  & \blacksquare & \mid  & \square&& \square&& \square &\mid & \blacksquare &\mid & \square&& \square&\mid & \blacksquare&& \blacksquare&& \blacksquare & \mid  \\ 0 &&&&&&&&&& 5 &&&&&&&&&& 10 &&&&&&&&&& 15\end{array} $$The length of black is $8$ and the length of white is $7$.

The problem seems to be elementary at the first sight. But after a period of thinking, one find it is hard to deal with. Here is Liu Ben's Original answer, I fulfill details to read more easily,

The number of cuts before $x$ is $\lfloor \frac{x-1}{n}\rfloor+\lfloor \frac{x-1}{m}\rfloor$, so $$(-1)^{\lfloor \frac{x-1}{n}\rfloor+\lfloor \frac{x-1}{m}\rfloor}=\begin{cases} 1 & \textrm{$[x-1,x]$ is colored by black }\\ -1 & \textrm{$[x-1,x]$ is colored by white } \end{cases}$$Thus it is equivlent to show that $\sum_{x=0}^{mn-1} (-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor}=1$, and we have know that $(-1)^{m+n}=1, (-1)^0=1$, so  it is equivlent to show that $$\sum_{x=1}^{mn} (-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor}=1$$Now we need some identity to expand the expression $(-1)^{\lfloor \frac{x}{n}\rfloor}$,

$$\begin{array}{rll} (-1)^{\lfloor x \rfloor}& = (-1)^{\lfloor x\rfloor}-1+1 \\ & =1+ 2\left(\sum_{n=0}^{\lfloor x\rfloor}(-1)^{n}\right)= 1+ 2\left(\sum_{n\leq x}(-1)^{n}\right)\end{array}$$

So

$$\begin{array}{rll}&\quad  \sum_{x=1}^{mn} (-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor} \\  & =\sum_{x=1}^{mn} \left(1+2\left(\sum_{k\leq x/n} (-1)^k \right)\right)\left(1+2\left(\sum_{k\leq x/m} (-1)^k\right)\right) \\ & = mn+2\underbrace{\sum_{x=1}^{mn}\sum_{k\leq x/n} (-1)^k}_{:=A}+2\underbrace{\sum_{x=1}^{mn}\sum_{k\leq x/m} (-1)^k}_{:=B}+4\sum_{x=1}^{mn}\left(\sum_{k\leq x/n} (-1)^k\right)\left(\sum_{h\leq x/m} (-1)^h\right)\end{array}$$

Firstly, we calculate $A$,

$$\begin{array}{rll}A & =\sum_{x=1}^{mn}\sum_{k\leq x/n} (-1)^k \\ & = \sum_{k=1}^m \#\{x\geq nk: x=1,\ldots,mn\}(-1)^k  \\ & =\sum_{k=0}^m n(m-k)(-1)^k \\ & = n\sum_{k=0}^m k(-1)^k\\& =-n\frac{m+1}{2}\end{array}$$

Similarly, $B=-m\frac{n+1}{2}$, therefore it remains to show

$$\sum_{x=1}^{mn}\left(\sum_{k\leq x/n} (-1)^k\right)\left(\sum_{h\leq x/m} (-1)^h\right)=\frac{(m+1)(n+1)}{4}$$

Let's compute !

$$\begin{array}{rll}\sum_{x=1}^{mn}\left(\sum_{k\leq x/n} (-1)^k\right)\left(\sum_{h\leq x/m} (-1)^h\right) & =\sum_{k=0}^{m}\sum_{h=0}^n\#\{x\geq \max (nk,mh), x=1,\ldots,mn\}(-1)^{k+h}\\ & =\sum_{k=0}^{m}\sum_{h=0}^n(mn- \max(nk,mh))(-1)^{k+h} \\ & =\sum_{k=0}^{m}\sum_{h=0}^n \max(nk,mh)(-1)^{k+h} \\ & =\sum_{k=0}^{m}\sum_{h=0}^n \frac{1}{2}(nk+mh+\left|nk-mh\right|)(-1)^{k+h}  \\ &= \frac{1}{2}\sum_{k=0}^{m}\sum_{h=0}^n \left|nk-mh\right|(-1)^{k+h} \\ & = \frac{mn}{2}\sum_{k=0}^m\sum_{h=0}^n\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h}\end{array}$$

So it reduces to show $\sum_{k=0}^m\sum_{h=0}^n\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h}=0$. We need some tools to calculate, consider the function $f$ with peroid $2$ and $f(x)=|x|$ for $x\in [-1,1]$, then the Fourier series of $f$ is $$f=\sum_{\ell \in \mathbb{Z}} a_{\ell} \mathrm{e}^{\frac{2\pi i \ell x}{2}}\qquad a_{\ell} =\frac{1}{2}\int_{-1}^1 |x| \mathrm{e}^{\frac{2\pi i \ell x}{2}}\textrm{d}x=\begin{cases}\frac{1}{2} & n=0 \\ -\frac{2}{\pi^2 n^2} & n\textrm{is odd} \\ 0 & n\neq 0\textrm{is even}\end{cases}$$

In other word, we have

$$x\in [-1,1]\Rightarrow \frac{1}{4}-\frac{|x|}{2}=\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell ^2}\mathrm{e}^{2\pi i \ell x}$$

Now, continuous

$$\begin{array}{rll} \frac{mn}{2}\sum_{k=0}^m\sum_{h=0}^n\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h} & = mn \sum_{k=0}^m\sum_{h=0}^n\frac{\left|\frac{k}{m}-\frac{h}{n}\right|}{2}(-1)^{k+h} \\ & =mn \sum_{k=0}^m\sum_{h=0}^n\bigg(\frac{1}{4}-\frac{\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h}}{2} \bigg) \\ & = \sum_{k=0}^m \sum_{h=0}^n \sum_{\ell\textrm{odd}} \frac{1}{\pi^2 \ell ^2} \mathrm{e}^{\frac{2\pi i}{2}\cdot \ell \left(\frac{k}{m}-\frac{h}{n}\right)}  \\  & =mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 }\left(\sum_{k=0}^m (-1)^k\mathrm{e}^{\frac{2 \pi i  \ell k}{2 m }}\right)\left(\sum_{h=0}^n (-1)^h\mathrm{e}^{-\frac{2 \pi i  \ell h}{2 n }}\right)\end{array}$$

It reduces to the case of the summation of geometry series, we have

$$\sum_{k=0}^m (-1)^k\mathrm{e}^{\frac{2 \pi i  \ell k}{2 m }}=\begin{cases}-1& m\nmid \ell \\ -1+m & m\mid \ell \end{cases}\qquad \sum_{h=0}^n (-1)^h\mathrm{e}^{-\frac{2 \pi i  \ell h}{2 n }} = \begin{cases}-1& n\nmid \ell \\ -1+n & n\mid \ell \end{cases}$$

Now we can deduct the result,

$$\begin{array}{rll} & \quad mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 }\left(\sum_{k=0}^m (-1)^k\mathrm{e}^{\frac{2 \pi i  \ell k}{2 m }}\right)\left(\sum_{h=0}^n (-1)^h\mathrm{e}^{-\frac{2 \pi i  \ell h}{2 n }}\right) \\ & =mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 } - mn\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ m|\ell \end{subarray}} \frac{m}{\pi^2 \ell^2} - mn\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ n|\ell \end{subarray}} \frac{n}{\pi^2 \ell^2} + mn\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ n|\ell \\ m|\ell \end{subarray}} \frac{nm}{\pi^2 \ell^2} \\ & = mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 } - n\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ m|\ell \end{subarray}} \frac{1}{\pi^2 (\ell/m)^2} - m\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ n|\ell \end{subarray}} \frac{1}{\pi^2 (\ell/n)^2} + \sum_{\begin{subarray}{l}\ell \textrm{odd}\\ nm\mid \ell \end{subarray}} \frac{1}{\pi^2 (\ell/mn)^2} \\ & =(m-1)(n-1) \sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 }  =\frac{(m-1)(n-1)}{4}\end{array}$$

The proof is complete. $\square$

If we reflect the process above carefully, we will find that the trick of exponential sums is useful in the domain of combinatorics involving number theory. It is powerful but not too beutiful. The amazing point is that in the process of counting number, $\pi$ can occur, even it will be cancelled finally.

Some days after, Liu Ben gives a new answer which uses Fourier analysis, it is more elegant than the above, and I fulfill details to read more easily,

Actually, as above it reduces to show $$\int_0^{mn}(-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor}\textrm{d}x=\int_0^{mn}(-1)^{\lfloor \frac{x}{n}\rfloor}\overline{(-1)^{\lfloor \frac{x}{m}\rfloor}}\textrm{d}x=1$$Conside $f(x)=(-1)^{\lfloor x\rfloor}$ as a function of period $2$, one can calculate its Fourier expansion$$f(x)=\frac{2}{\pi i}\sum_{\ell\textrm{odd}}\frac{1}{\ell} \mathrm{e}^{\frac{2\pi i \ell x}{2}}$$So $$\begin{array}{rll}\int_0^{mn}(-1)^{\lfloor \frac{x}{n}\rfloor}\overline{(-1)^{\lfloor \frac{x}{m}\rfloor}}\textrm{d}x& =\int_{0}^{mn}f(x/n)\overline{f(x/m)}\textrm{d}x \\ & =mn\int_0^1 f(ny)\overline{f(my)}\textrm{d}y \\ & = \frac{4 mn}{\pi^2}\sum_{\begin{subarray}{l}r,s  \textrm{odd} \\ mr=ns\end{subarray}}\frac{1}{rs} \\ & =  \frac{4 mn}{\pi^2}\sum_{\begin{subarray}{l}r,s  \textrm{odd} \\ r=tn,s=tm\end{subarray}}\frac{1}{rs} \\ &  =\frac{4}{\pi^2}\sum_{t\textrm{odd}}\frac{1}{t^2}=1\end{array} $$The proof is complete. $\square$

To complete this post, I want to give my answer of this problem. I think this answer is the most ingenious one. This is a proof without words as following.

When I heared the problem, I had no papers and pen to use. After thinking over brokenly, I came up the answer above one day after. And one can easily find that in the case of one of $m,n$ is even, then the difference between black and white vanish, and when $m,n$ are odd generally, the difference is $(m,n)$.

Ackowlegement

I want to thank Liu Ben for his nice presentation of question and answer. And congratulation to his addmision by ENS.

An interesting combinational problem的更多相关文章

  1. hdu 2426 Interesting Housing Problem 最大权匹配KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2426 For any school, it is hard to find a feasible ac ...

  2. HDU 2426 Interesting Housing Problem (最大权完美匹配)【KM】

    <题目链接> 题目大意: 学校里有n个学生和m个公寓房间,每个学生对一些房间有一些打分,如果分数为正,说明学生喜欢这个房间,若为0,对这个房间保持中立,若为负,则不喜欢这个房间.学生不会住 ...

  3. HDU 2426 Interesting Housing Problem(二分图最佳匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2426 题意:每n个学生和m个房间,现在要为每个学生安排一个房间居住,每个学生对于一些房间有一些满意度,如果满意度 ...

  4. HDU2426:Interesting Housing Problem(还没过,貌似入门题)

    #include <iostream> #include <queue> #include <stdio.h> #include <string.h> ...

  5. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  6. CodeForces 689E Mike and Geometry Problem (离散化+组合数)

    Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ...

  7. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  9. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

随机推荐

  1. 使用前端技术和MySQL+PHP制作自己的一个个人博客网站

    源代码地址:https://github.com/YauCheun/BlogCode 我的博客网站地址:http://www.yublog.fun/ 制作前景: 想拥有一个自己独自开发的一个小型博客网 ...

  2. 从壹开始前后端分离【 .NET Core2.0 +Vue2.0 】框架之十一 || AOP自定义筛选,Redis入门 11.1

    代码已上传Github+Gitee,文末有地址 书说上文<从壹开始前后端分离[ .NET Core2.0 Api + Vue 2.0 + AOP + 分布式]框架之十 || AOP面向切面编程浅 ...

  3. python内置方法大全

    数学运算 abs:求数值的绝对值 >>> abs(-2) 2 divmod:返回两个数值的商和余数 >>> divmod(5,2) (2, 1) >> ...

  4. windows系统下用python更新svn和Git

    转载请标明出处:http://www.cnblogs.com/zblade/ 最近在思考怎么实现python的一键打包,利用python的跨平台特性,可以实现在windows和mac下均可执行的特点. ...

  5. python中的编码与解码

      编码与解码 首先,明确一点,计算机中存储的信息都是二进制的   编码/解码本质上是一种映射(对应关系),比如‘a’用ascii编码则是65,计算机中存储的就是00110101,但是显示的时候不能显 ...

  6. vue-router导航守卫(router.beforeEach())的使用

    好久没写一些东西了,总是感觉有啥缺少的.~~~~恰好碰到最近在写一个移动端项目,遇到了如何使同一个链接在不同条件下跳转到不同路由组件问题,譬如大家经常看到手机中没登录跳转登录页,登陆后跳转个人信息页等 ...

  7. 使用Atlas进行元数据管理之Atlas简介

    背景:笔者和团队的小伙伴近期在进行数据治理/元数据管理方向的探索, 在接下来的系列文章中, 会陆续与读者们进行分享在此过程中踩过的坑和收获. 元数据管理系列文章: [0] - 使用Atlas进行元数据 ...

  8. 贝塞尔曲线控件 for .NET (EN)

    Conmajia 2012 Updated on Feb. 18, 2018 In Photoshop, there is a very powerful feature Curve Adjust, ...

  9. webpack-插件机制杂记

    系列文章 Webpack系列-第一篇基础杂记 webpack系列-插件机制杂记 前言 webpack本身并不难,他所完成的各种复杂炫酷的功能都依赖于他的插件机制.或许我们在日常的开发需求中并不需要自己 ...

  10. 一次快速改寫 SQL Server 高效查詢的範例

    最近線上系統突然出現匯出資料超過 10 筆時,查詢逾時的狀況,在仔細查找之後. 發現了問題原因,透過應用端與數據端兩邊同時調整,將查詢的效率提昇了約數百倍以上 首先,原本應用端的商務邏輯為每一分頁筆數 ...