A question of details in the solution at the end of this post of the question is asked by me at MSE.

Nowadays, I learnt from Liu Ben a question asked in the interview of ENS.

Assume $m,n$ are two coprime odd numbers, consider the interval $[0,mn]$. We cut the interval by $m,2m,\ldots,(n-1)m$ and $n, 2n,\ldots, (m-1)n$ into $m+n-1$ pieces of small intervals. And we color them from left to right by black-and-white periodically and black first. The question is to show $$(\textrm{the length of black})-(\textrm{the length of white})=1$$

For example, if $m=3,n=5$, $$\begin{array}{c*{31}}0 &&&&&& 3 &&&&&& 6 &&&&&& 9 &&&&&& 12 &&&&&& 15 \\ \mid & \blacksquare && \blacksquare && \blacksquare &\mid & \square && \square & \mid  & \blacksquare & \mid  & \square&& \square&& \square &\mid & \blacksquare &\mid & \square&& \square&\mid & \blacksquare&& \blacksquare&& \blacksquare & \mid  \\ 0 &&&&&&&&&& 5 &&&&&&&&&& 10 &&&&&&&&&& 15\end{array} $$The length of black is $8$ and the length of white is $7$.

The problem seems to be elementary at the first sight. But after a period of thinking, one find it is hard to deal with. Here is Liu Ben's Original answer, I fulfill details to read more easily,

The number of cuts before $x$ is $\lfloor \frac{x-1}{n}\rfloor+\lfloor \frac{x-1}{m}\rfloor$, so $$(-1)^{\lfloor \frac{x-1}{n}\rfloor+\lfloor \frac{x-1}{m}\rfloor}=\begin{cases} 1 & \textrm{$[x-1,x]$ is colored by black }\\ -1 & \textrm{$[x-1,x]$ is colored by white } \end{cases}$$Thus it is equivlent to show that $\sum_{x=0}^{mn-1} (-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor}=1$, and we have know that $(-1)^{m+n}=1, (-1)^0=1$, so  it is equivlent to show that $$\sum_{x=1}^{mn} (-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor}=1$$Now we need some identity to expand the expression $(-1)^{\lfloor \frac{x}{n}\rfloor}$,

$$\begin{array}{rll} (-1)^{\lfloor x \rfloor}& = (-1)^{\lfloor x\rfloor}-1+1 \\ & =1+ 2\left(\sum_{n=0}^{\lfloor x\rfloor}(-1)^{n}\right)= 1+ 2\left(\sum_{n\leq x}(-1)^{n}\right)\end{array}$$

So

$$\begin{array}{rll}&\quad  \sum_{x=1}^{mn} (-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor} \\  & =\sum_{x=1}^{mn} \left(1+2\left(\sum_{k\leq x/n} (-1)^k \right)\right)\left(1+2\left(\sum_{k\leq x/m} (-1)^k\right)\right) \\ & = mn+2\underbrace{\sum_{x=1}^{mn}\sum_{k\leq x/n} (-1)^k}_{:=A}+2\underbrace{\sum_{x=1}^{mn}\sum_{k\leq x/m} (-1)^k}_{:=B}+4\sum_{x=1}^{mn}\left(\sum_{k\leq x/n} (-1)^k\right)\left(\sum_{h\leq x/m} (-1)^h\right)\end{array}$$

Firstly, we calculate $A$,

$$\begin{array}{rll}A & =\sum_{x=1}^{mn}\sum_{k\leq x/n} (-1)^k \\ & = \sum_{k=1}^m \#\{x\geq nk: x=1,\ldots,mn\}(-1)^k  \\ & =\sum_{k=0}^m n(m-k)(-1)^k \\ & = n\sum_{k=0}^m k(-1)^k\\& =-n\frac{m+1}{2}\end{array}$$

Similarly, $B=-m\frac{n+1}{2}$, therefore it remains to show

$$\sum_{x=1}^{mn}\left(\sum_{k\leq x/n} (-1)^k\right)\left(\sum_{h\leq x/m} (-1)^h\right)=\frac{(m+1)(n+1)}{4}$$

Let's compute !

$$\begin{array}{rll}\sum_{x=1}^{mn}\left(\sum_{k\leq x/n} (-1)^k\right)\left(\sum_{h\leq x/m} (-1)^h\right) & =\sum_{k=0}^{m}\sum_{h=0}^n\#\{x\geq \max (nk,mh), x=1,\ldots,mn\}(-1)^{k+h}\\ & =\sum_{k=0}^{m}\sum_{h=0}^n(mn- \max(nk,mh))(-1)^{k+h} \\ & =\sum_{k=0}^{m}\sum_{h=0}^n \max(nk,mh)(-1)^{k+h} \\ & =\sum_{k=0}^{m}\sum_{h=0}^n \frac{1}{2}(nk+mh+\left|nk-mh\right|)(-1)^{k+h}  \\ &= \frac{1}{2}\sum_{k=0}^{m}\sum_{h=0}^n \left|nk-mh\right|(-1)^{k+h} \\ & = \frac{mn}{2}\sum_{k=0}^m\sum_{h=0}^n\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h}\end{array}$$

So it reduces to show $\sum_{k=0}^m\sum_{h=0}^n\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h}=0$. We need some tools to calculate, consider the function $f$ with peroid $2$ and $f(x)=|x|$ for $x\in [-1,1]$, then the Fourier series of $f$ is $$f=\sum_{\ell \in \mathbb{Z}} a_{\ell} \mathrm{e}^{\frac{2\pi i \ell x}{2}}\qquad a_{\ell} =\frac{1}{2}\int_{-1}^1 |x| \mathrm{e}^{\frac{2\pi i \ell x}{2}}\textrm{d}x=\begin{cases}\frac{1}{2} & n=0 \\ -\frac{2}{\pi^2 n^2} & n\textrm{is odd} \\ 0 & n\neq 0\textrm{is even}\end{cases}$$

In other word, we have

$$x\in [-1,1]\Rightarrow \frac{1}{4}-\frac{|x|}{2}=\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell ^2}\mathrm{e}^{2\pi i \ell x}$$

Now, continuous

$$\begin{array}{rll} \frac{mn}{2}\sum_{k=0}^m\sum_{h=0}^n\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h} & = mn \sum_{k=0}^m\sum_{h=0}^n\frac{\left|\frac{k}{m}-\frac{h}{n}\right|}{2}(-1)^{k+h} \\ & =mn \sum_{k=0}^m\sum_{h=0}^n\bigg(\frac{1}{4}-\frac{\left|\frac{k}{m}-\frac{h}{n}\right|(-1)^{k+h}}{2} \bigg) \\ & = \sum_{k=0}^m \sum_{h=0}^n \sum_{\ell\textrm{odd}} \frac{1}{\pi^2 \ell ^2} \mathrm{e}^{\frac{2\pi i}{2}\cdot \ell \left(\frac{k}{m}-\frac{h}{n}\right)}  \\  & =mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 }\left(\sum_{k=0}^m (-1)^k\mathrm{e}^{\frac{2 \pi i  \ell k}{2 m }}\right)\left(\sum_{h=0}^n (-1)^h\mathrm{e}^{-\frac{2 \pi i  \ell h}{2 n }}\right)\end{array}$$

It reduces to the case of the summation of geometry series, we have

$$\sum_{k=0}^m (-1)^k\mathrm{e}^{\frac{2 \pi i  \ell k}{2 m }}=\begin{cases}-1& m\nmid \ell \\ -1+m & m\mid \ell \end{cases}\qquad \sum_{h=0}^n (-1)^h\mathrm{e}^{-\frac{2 \pi i  \ell h}{2 n }} = \begin{cases}-1& n\nmid \ell \\ -1+n & n\mid \ell \end{cases}$$

Now we can deduct the result,

$$\begin{array}{rll} & \quad mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 }\left(\sum_{k=0}^m (-1)^k\mathrm{e}^{\frac{2 \pi i  \ell k}{2 m }}\right)\left(\sum_{h=0}^n (-1)^h\mathrm{e}^{-\frac{2 \pi i  \ell h}{2 n }}\right) \\ & =mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 } - mn\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ m|\ell \end{subarray}} \frac{m}{\pi^2 \ell^2} - mn\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ n|\ell \end{subarray}} \frac{n}{\pi^2 \ell^2} + mn\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ n|\ell \\ m|\ell \end{subarray}} \frac{nm}{\pi^2 \ell^2} \\ & = mn\sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 } - n\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ m|\ell \end{subarray}} \frac{1}{\pi^2 (\ell/m)^2} - m\sum_{\begin{subarray}{l}\ell \textrm{odd}\\ n|\ell \end{subarray}} \frac{1}{\pi^2 (\ell/n)^2} + \sum_{\begin{subarray}{l}\ell \textrm{odd}\\ nm\mid \ell \end{subarray}} \frac{1}{\pi^2 (\ell/mn)^2} \\ & =(m-1)(n-1) \sum_{\ell \textrm{odd}} \frac{1}{\pi^2 \ell^2 }  =\frac{(m-1)(n-1)}{4}\end{array}$$

The proof is complete. $\square$

If we reflect the process above carefully, we will find that the trick of exponential sums is useful in the domain of combinatorics involving number theory. It is powerful but not too beutiful. The amazing point is that in the process of counting number, $\pi$ can occur, even it will be cancelled finally.

Some days after, Liu Ben gives a new answer which uses Fourier analysis, it is more elegant than the above, and I fulfill details to read more easily,

Actually, as above it reduces to show $$\int_0^{mn}(-1)^{\lfloor \frac{x}{n}\rfloor+\lfloor \frac{x}{m}\rfloor}\textrm{d}x=\int_0^{mn}(-1)^{\lfloor \frac{x}{n}\rfloor}\overline{(-1)^{\lfloor \frac{x}{m}\rfloor}}\textrm{d}x=1$$Conside $f(x)=(-1)^{\lfloor x\rfloor}$ as a function of period $2$, one can calculate its Fourier expansion$$f(x)=\frac{2}{\pi i}\sum_{\ell\textrm{odd}}\frac{1}{\ell} \mathrm{e}^{\frac{2\pi i \ell x}{2}}$$So $$\begin{array}{rll}\int_0^{mn}(-1)^{\lfloor \frac{x}{n}\rfloor}\overline{(-1)^{\lfloor \frac{x}{m}\rfloor}}\textrm{d}x& =\int_{0}^{mn}f(x/n)\overline{f(x/m)}\textrm{d}x \\ & =mn\int_0^1 f(ny)\overline{f(my)}\textrm{d}y \\ & = \frac{4 mn}{\pi^2}\sum_{\begin{subarray}{l}r,s  \textrm{odd} \\ mr=ns\end{subarray}}\frac{1}{rs} \\ & =  \frac{4 mn}{\pi^2}\sum_{\begin{subarray}{l}r,s  \textrm{odd} \\ r=tn,s=tm\end{subarray}}\frac{1}{rs} \\ &  =\frac{4}{\pi^2}\sum_{t\textrm{odd}}\frac{1}{t^2}=1\end{array} $$The proof is complete. $\square$

To complete this post, I want to give my answer of this problem. I think this answer is the most ingenious one. This is a proof without words as following.

When I heared the problem, I had no papers and pen to use. After thinking over brokenly, I came up the answer above one day after. And one can easily find that in the case of one of $m,n$ is even, then the difference between black and white vanish, and when $m,n$ are odd generally, the difference is $(m,n)$.

Ackowlegement

I want to thank Liu Ben for his nice presentation of question and answer. And congratulation to his addmision by ENS.

An interesting combinational problem的更多相关文章

  1. hdu 2426 Interesting Housing Problem 最大权匹配KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2426 For any school, it is hard to find a feasible ac ...

  2. HDU 2426 Interesting Housing Problem (最大权完美匹配)【KM】

    <题目链接> 题目大意: 学校里有n个学生和m个公寓房间,每个学生对一些房间有一些打分,如果分数为正,说明学生喜欢这个房间,若为0,对这个房间保持中立,若为负,则不喜欢这个房间.学生不会住 ...

  3. HDU 2426 Interesting Housing Problem(二分图最佳匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2426 题意:每n个学生和m个房间,现在要为每个学生安排一个房间居住,每个学生对于一些房间有一些满意度,如果满意度 ...

  4. HDU2426:Interesting Housing Problem(还没过,貌似入门题)

    #include <iostream> #include <queue> #include <stdio.h> #include <string.h> ...

  5. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  6. CodeForces 689E Mike and Geometry Problem (离散化+组合数)

    Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ...

  7. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  9. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

随机推荐

  1. 7. VIM 系列 - 程序员利器(语法检测、代码块补全、symbol管理、函数跳转)

    目录 1. 语法检查利器 ale 2. 补全代码块 3. symbol 管理器 taglist.vim 4. 函数跳转 1. 语法检查利器 ale 安装 ale Plug 'w0rp/ale' 配置 ...

  2. AI - TensorFlow - 分类与回归(Classification vs Regression)

    分类与回归 分类(Classification)与回归(Regression)的区别在于输出变量的类型.通俗理解,定量输出称为回归,或者说是连续变量预测:定性输出称为分类,或者说是离散变量预测. 回归 ...

  3. Java的二分搜索树

    定义 二分搜索树是二叉树(不包含重复元素). 二分搜索树的每个节点的值,大于左子树的所有节点的值,小于其右子树的所有节点的值. 每一棵子树也是二分搜索树. 二叉树搜索树必须要有比较,继承Compara ...

  4. 《深入理解Java虚拟机》-----第8章 虚拟机字节码执行引擎——Java高级开发必须懂的

    概述 执行引擎是Java虚拟机最核心的组成部分之一.“虚拟机”是一个相对于“物理机”的概念 ,这两种机器都有代码执行能力,其区别是物理机的执行引擎是直接建立在处理器.硬件.指令集和操作系统层面上的,而 ...

  5. 【Android Studio安装部署系列】三十四、将Eclipse项目导入到Android Studio中

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 我采用的是笨方法:新创建Android Studio项目,然后将Eclipse项目中的目录一一复制到Android Studio项目 ...

  6. Jenkins|简单Job配置|启动脚本|测试报告

    目录 1.Jenkins安装 2.Jenkins启动脚本 3.节点配置 4.任务配置 5.集成HTML测试报告 1.Jenkins安装 操作环境:Ubuntu jenkins针对windows,ubu ...

  7. Angular开发技巧

    由于之前有幸去参加了ngChina2018开发者大会,听了will保哥分享了Angular开发技巧,自己接触Angular也有差不多快一年的时间了,所以打算对Angular开发中的一些技巧做一个整理 ...

  8. RESTful API接口文档规范小坑

    希望给你3-5分钟的碎片化学习,可能是坐地铁.等公交,积少成多,水滴石穿,谢谢关注. 前后端分离的开发模式,假如使用的是基于RESTful API的七层通讯协议,在联调的时候,如何避免配合过程中出现问 ...

  9. js正则表达式替换HTML标签以及空格(&nbsp;)

    参考:范仁义 js代码: function filter(text) { var reg = /<[^<>]+>/g;//1.全局匹配g肯定忘记写,2.<>标签中不 ...

  10. 简述C#中IO的应用

    在.NET Framework 中. System.IO 命名空间主要包含基于文件(和基于内存)的输入输出(I/O)服务的相关基础类库.和其他命名空间一样. System.IO 定义了一系列类.接口. ...