CF914G Sum the Fibonacci FWT、子集卷积
一道良心的练习FWT和子集卷积的板子……
具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \oplus s_b\)用xor卷积算出来,把斐波那契数代进去,然后将三个数组and卷积,最后取\(2^i (i \in Z)\)的位置的答案的和
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
int read(){
int a = 0; char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
const int _ = (1 << 17) + 3 , MOD = 1e9 + 7;
#define lowbit(x) (x & (-x))
int fib[_] , arr[_] , cnt1[_] , Or[18][_] , ansOr[_] , tmp[_] , And[_] , Xor[_] , N;
void orFWT(int *arr , long long tp){
for(int i = 0 ; i < 17 ; ++i)
for(int j = 0 ; j < 1 << 17 ; j += 1 << (i + 1))
for(int k = 0 ; k < 1 << i ; ++k)
arr[(1 << i) + j + k] = (arr[(1 << i) + j + k] + tp * arr[j + k] + MOD) % MOD;
}
void andFWT(int *arr , long long tp){
for(int i = 0 ; i < 17 ; ++i)
for(int j = 0 ; j < 1 << 17 ; j += 1 << (i + 1))
for(int k = 0 ; k < 1 << i ; ++k)
arr[j + k] = (arr[j + k] + tp * arr[(1 << i) + j + k] + MOD) % MOD;
}
void xorFWT(int *arr , long long tp){
for(int i = 0 ; i < 17 ; ++i)
for(int j = 0 ; j < 1 << 17 ; j += 1 << (i + 1))
for(int k = 0 ; k < 1 << i ; ++k){
int x = arr[j + k] , y = arr[(1 << i) + j + k];
arr[j + k] = (x + y) % MOD;
arr[(1 << i) + j + k] = (x - y + MOD) % MOD;
if(tp == -1){
if(arr[j + k] & 1) arr[j + k] += MOD;
arr[j + k] >>= 1;
if(arr[(1 << i) + j + k] & 1) arr[(1 << i) + j + k] += MOD;
arr[(1 << i) + j + k] >>= 1;
}
}
}
void init(){
for(int i = 1 ; i < 1 << 17 ; ++i)
cnt1[i] = cnt1[i - lowbit(i)] + 1;
fib[1] = 1;
for(int i = 2 ; i < 1 << 17 ; ++i)
fib[i] = (fib[i - 1] + fib[i - 2]) % MOD;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
init();
N = read();
for(int i = 1 ; i <= N ; ++i){
int p = read();
++arr[p]; ++Or[cnt1[p]][p];
}
memcpy(And , arr , sizeof(arr)); memcpy(Xor , arr , sizeof(arr));
for(int i = 0 ; i <= 17 ; ++i)
orFWT(Or[i] , 1);
for(int i = 0 ; i <= 17 ; ++i){
memset(tmp , 0 , sizeof(tmp));
for(int j = 0 ; j <= i ; ++j)
for(int k = 0 ; k < 1 << 17 ; ++k)
tmp[k] = (tmp[k] + 1ll * Or[j][k] * Or[i - j][k]) % MOD;
orFWT(tmp , -1);
for(int k = 0 ; k < 1 << 17 ; ++k)
if(cnt1[k] == i)
ansOr[k] = tmp[k];
}
xorFWT(Xor , 1);
for(int i = 0 ; i < 1 << 17 ; ++i)
Xor[i] = 1ll * Xor[i] * Xor[i] % MOD;
xorFWT(Xor , -1);
for(int i = 0 ; i < 1 << 17 ; ++i){
ansOr[i] = 1ll * ansOr[i] * fib[i] % MOD;
And[i] = 1ll * And[i] * fib[i] % MOD;
Xor[i] = 1ll * Xor[i] * fib[i] % MOD;
}
andFWT(ansOr , 1); andFWT(And , 1); andFWT(Xor , 1);
for(int i = 0 ; i < 1 << 17 ; ++i)
And[i] = 1ll * ansOr[i] * And[i] % MOD * Xor[i] % MOD;
andFWT(And , -1);
int ans = 0;
for(int i = 1 ; i < 1 << 17 ; i <<= 1)
ans = (ans + And[i]) % MOD;
cout << ans;
return 0;
}
CF914G Sum the Fibonacci FWT、子集卷积的更多相关文章
- CF914G Sum the Fibonacci(FWT,FST)
CF914G Sum the Fibonacci(FWT,FST) Luogu 题解时间 一堆FWT和FST缝合而来的丑陋产物. 对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求 ...
- CF914G Sum the Fibonacci (快速沃尔什变换FWT + 子集卷积)
题面 题解 这是一道FWT和子集卷积的应用题. 我们先设 cnt[x] 表示 Si = x 的 i 的数量,那么 这里的Nab[x]指满足条件的 Sa|Sb=x.Sa&Sb=0 的(a,b)二 ...
- 【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)
题目描述 给出一个长度为 $n$ 的序列 $\{s\}$ ,对于所有满足以下条件的五元组 $(a,b,c,d,e)$ : $1\le a,b,c,d,e\le n$ : $(s_a|s_b)\& ...
- Comet Contest#11 F arewell(DAG计数+FWT子集卷积)
传送门. 题解: 4月YY集训时做过DAG计数,和这个基本上是一样的,但是当时好像直接暴力子集卷积,不然我省选时不至于不会,这个就多了个边不选的概率和子集卷积. DAG计数是个套路来的,利用的是DAG ...
- CF838C(博弈+FWT子集卷积+多项式ln、exp)
传送门: http://codeforces.com/problemset/problem/838/C 题解: 如果一个字符串的排列数是偶数,则先手必胜,因为如果下一层有后手必赢态,直接转移过去,不然 ...
- 题解 CF914G Sum the Fibonacci
题目传送门 题目大意 给出\(n,s_{1,2,...,n}\),定义一个五元组\((a,b,c,d,e)\)合法当且仅当: \[1\le a,b,c,d,e\le n \] \[(s_a\vee s ...
- CF914G Sum the Fibonacci
解:发现我们对a和b做一个集合卷积,对d和e做一个^FWT,然后把这三个全部对位乘上斐波那契数,然后做&FWT就行了. #include <bits/stdc++.h> , MO ...
- Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci
题意:给一个数组s,求\(f(s_a | s_b) * f(s_c) * f(s_d \oplus s_e)\),f是斐波那契数列,而且要满足\(s_a\&s_b==0\),\((s_a | ...
- CF 914 G Sum the Fibonacci —— 子集卷积,FWT
题目:http://codeforces.com/contest/914/problem/G 其实就是把各种都用子集卷积和FWT卷起来算即可: 注意乘 Fibonacci 数组的位置: 子集卷积时不能 ...
随机推荐
- 简历HTML网页版
<!DOCTYPE html><html> <head> <meta charset="utf-8" /> <title> ...
- 「JavaScript」JS四种跨域方式详解
原文地址https://segmentfault.com/a/1190000003642057 超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript ...
- Javascript高级程序设计复习——第五章引用类型 【原创】
5.1 Object类型 1:创建Object实例的两种方式 ①new构造法 var obj1 = new Object(); 注意大写!不传递参数时可以省略圆括号 obj1.hehe = &quo ...
- nrpe参数传递
如果需要nrpe进行参数传递需要主要一下几个方面: 1.编译nrpe的时候需要增加参数--enable-command-args 2.修改nrpe.cfg文件中参数dont_blame_nrpe=1 ...
- Jenkins持续集成项目搭建与实践——基于Python Selenium自动化测试(自由风格)
Jenkins简介 Jenkins是Java编写的非常流行的持续集成(CI)服务,起源于Hudson项目.所以Jenkins和Hudson功能相似. Jenkins支持各种版本的控制工具,如CVS.S ...
- transform-origin
transform-origin:改变原点中心位置 transform-origin是变形原点,也就是该元素围绕着那个点变形或旋转,transform-origin并不是transform中的属性值, ...
- mock打桩之EasyMock
TDD是测试驱动开发(Test-Driven Development)的英文简称,是敏捷开发中的一项核心实践和技术,也是一种设计方法论.TDD的原理是在开发功能代码之前,先编写单元测试用例代码,测试代 ...
- Python 作用域, 局部与全局变量
全局与局部变量 在子程序(函数)中定义的变量称为局部变量, 在程序的一开始定义的变量称为全局变量 全局变量作用于整个程序, 局部变量作用域是定义该变量的子程序 当全局变量与局部变量重名时: 在定义局部 ...
- Mysql-如何正确的使用索引以及索引的原理
一. 介绍 二. 索引的原理 三. 索引的数据结构 四. 聚集索引与辅助索引 五. MySQL索引管理 六. 测试索引 七. 正确使用索引 八. 联合索引与覆盖索引 九. 查询优化神器-explain ...
- java Queue中 add/offer,element/peek,remove/poll区别
转自https://blog.csdn.net/u012050154/article/details/60572567 java Queue中 add/offer,element/peek,remov ...