BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

题意:《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

分析:

我们构造出一个矩阵

$\begin{matrix}
    1&2^03^1&2^03^2\\
    2^13^0&2^13^1&2^13^2\\
    2^23^0&2^23^1&2^23^2\\
\end{matrix}
$

发现矩阵的相邻两个格子的数不能同时取

状压DP一下

要把所有不在矩阵中的数当作1重新构造,比如5,7等等

每个矩阵的结果乘起来就是答案

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL long long
LL p=1000000001,A,f[18][1<<12];
int vis[100050],s[18],mat[18][18];
LL ans=1;
void build(int x){
int n=1,m=1,now=x;
while(now*3<=A)m++,now*=3;
now=x;
while(now*2<=A)n++,now<<=1;
int mask=(1<<m)-1;
memset(s,0,sizeof(s));
memset(f,0,sizeof(f));
memset(mat,0,sizeof(mat));
mat[1][1]=x;vis[x]=1;
for(int i=2;i<=m;i++){
mat[1][i]=mat[1][i-1]*3;
vis[mat[1][i]]=1;
}
s[1]=mask;
for(int i=2;i<=n;i++){
mat[i][1]=mat[i-1][1]*2;
vis[mat[i][1]]=1;
for(int j=2;j<=m;j++){
mat[i][j]=mat[i-1][j]*2;
if(mat[i][j]>A){
s[i]=mask^((1<<m-j+1)-1);
break;
}
vis[mat[i][j]]=1;
}
if(!s[i])s[i]=mask;
}
f[0][0]=1;
s[0]=mask;
for(int i=0;i<n;i++){
for(int j=0;j<=mask;j++){
if((j|s[i])!=s[i])continue;
if(j&(j<<1))continue;
for(int k=0;k<=mask;k++){
if((k|s[i+1])!=s[i+1])continue;
if(k&(k<<1))continue;
if(j&k)continue;
f[i+1][k]+=f[i][j];
f[i+1][k]%=p;
}
}
}
LL re=0;
for(int i=0;i<=mask;i++)re+=f[n][i],re%=p;
ans=re*ans%p; /*for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d ",mat[i][j]);
}
puts("");
}*/ /*for(int i=1;i<=n;i++){
printf("%d\n",s[i]);
}*/
}
int main(){
scanf("%lld",&A);
for(int i=1;i<=A;i++){
if(!vis[i])build(i);
}
printf("%lld",ans);
}

BZOJ_2734_[HNOI2012]集合选数_构造+状压DP的更多相关文章

  1. [HNOI2012]集合选数(构造,状态压缩,DP)

    神仙题. 莫名其妙的就试一试把所有数放进一个类似矩阵的东西里面. 首先把 \(1\) 放到左上角,然后在每个数的右边放它的 \(3\) 倍(大于 \(n\) 就不用放了),下面放它的 \(2\) 倍( ...

  2. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  3. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  4. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  5. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  6. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  7. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. [HNOI2012]集合选数(状压DP+构造)

    题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...

  9. BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]

    传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...

随机推荐

  1. 途牛java实习面试(失败)

    一进去让自己介绍.简单介绍了一下.然后让我自己说说框架.问题太大一紧张卡住了. 然后面试官开始问,让我介绍多线程,我就简单介绍了多线程.然后问我有没有做过多线程的项目,我说没有. 问了MySQL的锁和 ...

  2. windows下mongodb安装详解

    1.打开官网https://www.mongodb.com/download-center?jmp=nav#community 注:这里小伙伴们可是开启下FQ软件psiphon 3下载(不开启FQ好像 ...

  3. Mac下通过brew安装指定版本的nodejs

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "PingFang SC Semibold"; color: #2c303 ...

  4. 从JavaWeb危险字符过滤浅谈ESAPI使用

    事先声明:只是浅谈,我也之用了这个组件的一点点. 又到某重要XX时期(但愿此文给面临此需求的同仁有所帮助),某Web应用第一次面临安全加固要求,AppScan的安全测试报告还是很清爽的,内容全面,提示 ...

  5. vfd电子时钟制作

    17年也没干个啥,年后就去折腾着玩意儿了,也不知道我折腾它还是它折腾我.反正总之现在勉强可以交作业了,呵呵 硬件: 1.罗耶振荡电路输出一路4v交流,一路25v交流 其中4v直接驱动灯丝,另一路经电桥 ...

  6. Windows下的OpenCVSharp配置

    OPenCvSharp是OpenCV的Net Warpper,应用最新的OpenCV库开发,目前放在github.. 本人认为OpenCvSharp比EmguCV使用起来更为方便,因为函数更接近于原生 ...

  7. HTML5这个概念的解释

    关于HTML5这个概念我一直很多困惑,稍微总结一下. 从HTML说起,HTML作为一个标记语言,通过这种标记定义了一个网页的dom tree,也定义了网页的结构,然后CSS定义了在这个结构基础上的样式 ...

  8. 为什么Python编程被国家教育如此重视?请开始你的表演!

    高考新宠 在高考更改之前,提起编程,人们可能更多的会想起c语言之类的. 然而,高考更始之后,Python这门编程说话一夜之间传进了千家万户. 现实上,在IEEE(美国电气电子工程师学会出书的旗舰杂志) ...

  9. 理解Python中的类对象、实例对象、属性、方法

    class Animal(object): # 类对象 age = 0 # 公有类属性 __like = None # 私有类属性 def __init__(self): # 魔法方法 self.na ...

  10. Selenium2Lib库之界面元素交互常用关键字实战

    5.1 Select Radio Button单选按钮关键字 按F5 查看Select Radio Button关键字的说明,如下图: Select Radio Button [ group_name ...