BZOJ_3173_[Tjoi2013]最长上升子序列_splay
BZOJ_3173_[Tjoi2013]最长上升子序列_splay
Description
Input
Output
Sample Input
0 0 2
Sample Output
1
2
HINT
100%的数据 n<=100000
分析:由于数字是升序插入的,因此每次操作只会对它一个数产生影响。
问题转化为:插入一个数,查询某个位置前面的最大值。
直接用平衡树维护即可。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define N 100050
#define ls ch[p][0]
#define rs ch[p][1]
#define get(x) (ch[f[x]][1]==x)
int f[N],rt,ch[N][2],siz[N],cnt,val[N],mx[N],n,ans;
void pushup(int p) {
if(p) {
siz[p]=siz[ls]+siz[rs]+1;
mx[p]=max(max(mx[ls],mx[rs]),val[p]);
}
}
void rotate(int x) {
int y=f[x],z=f[y],k=get(x);
ch[y][k]=ch[x][!k]; f[ch[y][k]]=y;
ch[x][!k]=y; f[y]=x; f[x]=z;
if(z) ch[z][ch[z][1]==y]=x;
pushup(y); pushup(x);
if(rt==y) rt=x;
}
void splay(int x,int y) {
for(int fa;(fa=f[x])!=y;rotate(x))
if(f[fa]!=y)
rotate(get(fa)==get(x)?fa:x);
}
int find(int x) {
int p=rt;
while(1) {
if(x<=siz[ls]) p=ls;
else {
x-=siz[ls]+1;
if(!x) return p;
p=rs;
}
}
}
int main() {
scanf("%d",&n);
int i,x,y,p;
for(i=1;i<=n;i++) {
scanf("%d",&x);
if(x==0) {
if(!rt) {
rt=i; val[i]=1; siz[i]=1; pushup(i);
}
else {
p=find(1);
splay(p,0);
val[i]=1; siz[i]=1; f[i]=p; ls=i;
pushup(i); pushup(p);
}
}else if(x==i-1) {
p=find(i-1);
splay(p,0);
val[i]=mx[p]+1; siz[i]=1; f[i]=p; rs=i;
pushup(i); pushup(p);
}else {
int tmp=x;
x=find(x); p=find(tmp+1);
splay(x,0); splay(p,x);
val[i]=max(mx[ch[x][0]],val[x])+1; siz[i]=1; f[i]=p; ls=i;
pushup(i); pushup(p); pushup(x);
}
ans=max(ans,val[i]);
printf("%d\n",ans);
}
}
BZOJ_3173_[Tjoi2013]最长上升子序列_splay的更多相关文章
- [BZOJ3173][Tjoi2013]最长上升子序列
[BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...
- BZOJ 3173: [Tjoi2013]最长上升子序列
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1524 Solved: 797[Submit][St ...
- Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1183 Solved: 610[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )
因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1613 Solved: 839[Submit][St ...
- bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2253 Solved: 1136[Submit][S ...
- 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列
[LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...
- P4309 [TJOI2013]最长上升子序列
题目 P4309 [TJOI2013]最长上升子序列 做法 最长上升序列的求法肯定是烂大街了 水题是肯定的,确定出序列的位置然后套个树状数组就好了(强制在线的话改成线段树维护前缀最值也行) 所以说这题 ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
随机推荐
- 万水千山ABP - 弹出对话框禁用回车
模态对话框中禁用回车 ABP Zero 中,使用弹出对话框进行实体编辑,回车时会自动保存并关闭对话框.那么如何禁用这个回车功能 ? 查看实体列表视图 index.cshtml 所对应加载的脚本文件 i ...
- POP3和imap
POP3 POP3是Post Office Protocol 3的简称,即邮局协议的第3个版本,是TCP/IP协议族中的一员(默认端口是110).本协议主要用于支持使用客户端远程管理在服务器上的电子邮 ...
- python爬虫——词云分析最热门电影《后来的我们》
1 模块库使用说明 1.1 requests库 requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更 ...
- 界面渐变特效 -- CSS实现 -- 兼容IE8
特别注意:里面的RGB颜色值必须要全写,不能使用缩写.左右:background: -webkit-gradient(linear, 0 0, 0 100%, from(#80c1e7), to(#2 ...
- 完美解决IE渲染方式进入兼容模式问题
<meta http-equiv="X-UA-Compatible" content="IE=9; IE=8; IE=7; IE=EDGE"> &l ...
- 常用的几个在线生成网址二维码的API接口
原创,转载请注明出处! 用接口的好处就是简单,方便,时时更新,二维码生成以后不用保存在本项目服务器上面,可以减少不必要的开支,无需下载安装什么软件,可简单方便地引用,这才是最便捷的免费网址二维码生成 ...
- 分布式服务通讯框架XXL-RPC
<分布式服务通讯框架XXL-RPC> 一.简介 1.1 概述 XXL-RPC 是一个分布式服务通讯框架,提供稳定高性能的RPC远程服务调用功能.现已开放源代码,开箱即用. 1.2 特 ...
- (一)SpringBoot基础篇- 介绍及HelloWorld初体验
1.SpringBoot介绍: 根据官方SpringBoot文档描述,BUILD ANYTHING WITH SPRING BOOT (用SPRING BOOT构建任何东西,很牛X呀!),下面是官方文 ...
- SSM博客登录注册
我的博客采用的是 spring+springmvc+mybatis框架,用maven和git管理项目,之后的其他功能还有待进一步的学习. 首先新建一个maven项目,我的项目组成大概就这样, 建立好项 ...
- Oracle数据库逻辑迁移之数据泵的注意事项
环境:数据迁移,版本 11.2.0.4 -> 12.2.0.1 思考: 对于DBA而言,常用物理方式的迁移,物理迁移的优势不必多说,使用这种方式不必担心对象前后不一致的情况,而这往往也解决了不懂 ...