挺有趣的一道题

首先转化模型,思路参考蓝书,可得出等同于求共n个叶子,且每个非叶结点至少有两个子结点的无标号树的个数的二倍,设个数为\(f[n]\)

考虑怎么求\(f[n]\),假设有一个\(n\)的整数划分,分别代表每棵子树中的叶节点个数,然后用可重组合,乘法原理和加法原理把\(f[n]\)递推出来

这个过程可以用\(dp\)来完成,设\(g[i][j]\)表示子树中叶结点数量最大值小于等于\(i\),共有\(j\)个叶结点的树的个数,转移时枚举最大的叶结点数量\(i\)和叶结点数量为\(i\)的子树个数\(k\),转移方程如下:

\[g[i][j]=\sum\limits_{k=0}^{ki\leqslant j}\binom{f[i]+k-1}{k}g[i-1][j-ki]
\]

然后\(f[i]=g[i-1][i]\)

边界的设置比较神奇,我也不明白,直接把大刘的代码拿过来用了

#include <bits/stdc++.h>

using namespace std;

#define ll long long
#define N 30 ll C(ll n, ll m) {
double ans = 1;
for(ll i = n-m+1; i <= n; ++i) ans *= i;
for(ll i = 1; i <= m; ++i) ans /= i;
return (ll)(ans+0.5);
} ll g[35][35], f[35]; int main() {
f[1] = 1; //三个边界
for(int i = 0; i <= N; ++i) g[i][0] = 1;
for(int i = 1; i <= N; ++i) g[i][1] = 1;
for(int i = 1; i <= N; ++i) {
for(int j = 1; j <= N; ++j) {
g[i][j] = 0;
for(int k = 0; k*i <= j; ++k) g[i][j] += C(f[i]+k-1, k)*g[i-1][j-k*i];
}
f[i+1] = g[i][i+1];
}
int n;
while(~scanf("%d", &n) && n) printf("%lld\n", n == 1 ? 1 : 2*f[n]); //特判1,别忘乘以2
return 0;
}

蓝书例题之UVa 10253 Series-Parallel Networks的更多相关文章

  1. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)

    这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...

  2. 紫书 例题8-12 UVa 12627 (找规律 + 递归)

    紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...

  3. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  4. 紫书 例题8-4 UVa 11134(问题分解 + 贪心)

     这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...

  5. 紫书 例题 10-2 UVa 12169 (暴力枚举)

    就是暴力枚举a, b然后和题目给的数据比较就ok了. 刘汝佳这道题的讲解有点迷,书上讲有x1和a可以算出x2, 但是很明显x2 = (a * x1 +b) 没有b怎么算x2?然后我就思考了很久,最后去 ...

  6. 紫书 例题8-17 UVa 1609 (构造法)(详细注释)

    这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...

  7. 紫书 例题 10-26 UVa 11440(欧拉函数+数论)

    这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...

  8. 紫书 例题 9-5 UVa 12563 ( 01背包变形)

    总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...

  9. 紫书 例题8-2 UVa 11605(构造法)

    这道题方法非常的巧妙, 两层的n*n, 第一层第I行全是第I个国家, 第二层的第j列全是第j个国家.这样能符合题目的条件.比如说第1个国家, 在第一层的第一行全是A, 然后在第二层的第一行就有ABCD ...

随机推荐

  1. 关于视频断点续播和H5的本地存储

    前段时间,需要在下实现一个视频的断点续播功能,呃,我不会呀,这就很尴尬了.然后呢,在下就想起了一个叫做localStorage的东西.这是个什么东西呢?在网上查阅了一些资料后,在下发现这是webSto ...

  2. 亿级流量场景下,大型架构设计实现【全文检索高级搜索---ElasticSearch篇】-- 中

    1.Elasticsearch的基础分布式架构: 1.Elasticsearch对复杂分布式机制的透明隐藏特性2.Elasticsearch的垂直扩容与水平扩容3.增减或减少节点时的数据rebalan ...

  3. Android Studio教程06-布局,监听器以及基本控件

    目录 2. 监听器 3. 布局 3.1. 布局分类 (1). Linear Layout (2). Relative Layout (3). ListView (4). Grid View 4. 其他 ...

  4. Netty 核心内容之 编解码器

    原文链接 Netty 核心内容之 编解码器 代码仓库地址 编解码器 我认为Netty 最棒的一点就是Netty 设计的编解码链,这一优秀的设计,可以很方便的实现二进制流->ByteBuf-> ...

  5. Jquery消息提示插件toastr使用详解

    toastr是一个基于jQuery简单.漂亮的消息提示插件,使用简单.方便,可以根据设置的超时时间自动消失. 1.使用很简单,首选引入toastr的js.css文件 html <script s ...

  6. 28 Python初学(事件驱动模型)

    参考文章地址:http://www.cnblogs.com/yuanchenqi/articles/5722574.html 两个步骤: recvfrom 系统调用 : 拷贝数据 从kernel到数据 ...

  7. df、du命令

     EXT3  最多只能支持32TB的文件系统和2TB的文件,实际只能容纳2TB的文件系统和16GB的文件 Ext3目前只支持32000个子目录 Ext3文件系统使用32位空间记录块数量和i-节点数量 ...

  8. OneHotEncoder独热编码和 LabelEncoder标签编码

    学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到 ...

  9. 《你必须掌握的Entity Framework 6.x与Core 2.0》勘误

    第5章 5.1.1----致谢网友[宪煌] public virtual ICollection Post {get;set;} 修改为 public virtual ICollection<P ...

  10. 心智与认知(1): 反馈循环(Feedback loop)

    目录: ** 0x01 反馈循环(Feedback loop) | How to see System in everyday life ** 0x02 如何像视频游戏一样剖析你的人生?| 打怪升级这 ...