[BJOI2019]光线(递推)

题面

洛谷

题解

假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\)。

那么可以得到转移:

\[A=A'\sum_{j=0}^\infty B'^j*b^j*a=\frac{A'a}{1-B'b}
\]

\[B=b+a\sum_{j=0}^\infty B'^j*b^j*a*B'=b+\frac{B'a^2}{1-B'b}
\]

然后就做到线性了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 500500
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,A=1,B;
int main()
{
n=read();int inv=fpow(100,MOD-2);
for(int i=1;i<=n;++i)
{
int a=1ll*read()*inv%MOD,b=1ll*read()*inv%MOD;
int r=fpow((1-1ll*B*b%MOD+MOD)%MOD,MOD-2);
A=1ll*A*a%MOD*r%MOD;
B=(b+1ll*B*a%MOD*a%MOD*r)%MOD;
}
printf("%d\n",A);
return 0;
}

[BJOI2019]光线(递推)的更多相关文章

  1. [BJOI2019]光线——递推

    题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$ ...

  2. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  3. LOJ#3093. 「BJOI2019」光线(递推+概率期望)

    题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从 ...

  4. luogu P5323 [BJOI2019]光线

    传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...

  5. [BJOI2019] 光线

    看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问 ...

  6. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  7. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  8. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  9. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

随机推荐

  1. 使用C# 操作存储过程,执行sql语句通用类

    如何使用C# 操作存储过程,执行sql语句? 闲话不多说,直接上代码:     /// <summary>    /// Sql通用类    /// </summary>    ...

  2. 桥接模式 桥梁模式 bridge 结构型 设计模式(十二)

      桥接模式Bridge   Bridge 意为桥梁,桥接模式的作用就像桥梁一样,用于把两件事物连接起来   意图 将抽象部分与他的实现部分进行分离,使得他们都可以独立的发展.  意图解析 依赖倒置原 ...

  3. Markdown 7min快速入门

    目录 概述 宗旨 兼容 特殊字符自动换行 区块元素 段落和换行 标题 区块引用 列表 代码区块 分隔线 区段元素 链接 强调 代码 图片 其他 表格 删除线 注脚 锚点 反斜杠 自动链接 参考文献 正 ...

  4. 微信小程序 canvas 文字自动换行

    Page({ drawCanvas: function(ctx) {// 地址 ctx.setFontSize() ctx.setFillStyle('#9E7240') ctx.textAlign= ...

  5. Ocelot + Consul + Registrator 基于Docker 实现服务发现、服务自动注册

    目录 1. Consul集群搭建 1.1 F&Q Consul官方推荐的host网络模式运行 2. Registrator服务注册工具 2.1 F&Q Registrator悬挂服务 ...

  6. selenium-确认进入了预期页面

    selenium确认进入了预期页面 在自动化操作中,浏览器每次进入一个新的需要,都需要确认该页面是否打开或打开的页面是否是预期的页面 需要进行确认页面后方可进行下一步操作 确认页面有很多中方法,像每个 ...

  7. Docker-Dockerfile及基本语法

    Dockerfile的作用是通过它可以生成自定镜像,先介绍几个基本的docker命令. [docker镜像相关的命令]docker search 镜像名: 搜索镜像docker pull 镜像名: 镜 ...

  8. 从0开始的Python学习013编写一个Python脚本

    通过之前的学习我们已经了解了Python的很多基础运用了,现在我们尝试着做一个有使用价值的小脚本. 问题 需求: 我想要一个可以给我备份重要文件的程序. 需求分析: 首先文件是有存储路径,文件的路径和 ...

  9. Surging微服务的注意事项

    做个记录 1.Service的方法必须是异步方法 这个是同事发现的,非异步方法Swagger会用不了 2.仓储层不能用接口 这个是自己做的,根据同事的例子,本来好好的,想着在仓储层给加个接口,然后用接 ...

  10. EF Core使用笔记(基于MySql数据库)

    一.什么是EF Entity Framework 是适用于.NET 的对象关系映射程序 (O/RM). 二.比较 EF Core 和 EF6 1.Entity Framework 6 Entity F ...