[BJOI2019]光线(递推)

题面

洛谷

题解

假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\)。

那么可以得到转移:

\[A=A'\sum_{j=0}^\infty B'^j*b^j*a=\frac{A'a}{1-B'b}
\]

\[B=b+a\sum_{j=0}^\infty B'^j*b^j*a*B'=b+\frac{B'a^2}{1-B'b}
\]

然后就做到线性了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 500500
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int n,A=1,B;
int main()
{
n=read();int inv=fpow(100,MOD-2);
for(int i=1;i<=n;++i)
{
int a=1ll*read()*inv%MOD,b=1ll*read()*inv%MOD;
int r=fpow((1-1ll*B*b%MOD+MOD)%MOD,MOD-2);
A=1ll*A*a%MOD*r%MOD;
B=(b+1ll*B*a%MOD*a%MOD*r)%MOD;
}
printf("%d\n",A);
return 0;
}

[BJOI2019]光线(递推)的更多相关文章

  1. [BJOI2019]光线——递推

    题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$ ...

  2. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  3. LOJ#3093. 「BJOI2019」光线(递推+概率期望)

    题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从 ...

  4. luogu P5323 [BJOI2019]光线

    传送门 先考虑\(n=1\)的情况不是输入数据都告诉你了吗 然后考虑\(n=2\),可以光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\inf ...

  5. [BJOI2019] 光线

    看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问 ...

  6. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  7. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  8. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  9. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

随机推荐

  1. Java并发——synchronized关键字

    前言: 只要涉及到Java并发那么我们就会考虑线程安全,实际上能够实现线程安全的方法很多,今天先介绍一下synchronized关键字,主要从使用,原理介绍 一.synchronized的使用方法 1 ...

  2. 并发concurrent---1

    背景:并发知识是一个程序员段位升级的体现,同样也是进入BAT的必经之路,有必要把并发知识重新梳理一遍. 并发concurrent: 说到并发concurrent,肯定首先想到了线程,创建线程有两种方法 ...

  3. vue 模板template

    入门 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8& ...

  4. css控制元素 水平垂直居中

    控制元素居中核心代码为 position: absolute; left: 0; right: 0; top: 0; bottom: 0; margin: auto; css: /* 容器 */ .w ...

  5. 基于django的视频点播网站开发

    项目名称 基于django的视频点播网站开发 项目背景 学习完毕python和django之后,想找个项目练练手,本来想写个博客项目练手,无奈别人已经写过了,所以笔者就打算写一个视频点播网站,因为笔者 ...

  6. SqlServer无备份下误删数据恢复

    系统已上线,给客户修改bug的时候,使用delete语句删表数据,没想到库没切换成测试库.误删了正式库的数据,而且一次备份都没有做过,玩大了 不扯了,进入主题 网上很多方法,都是针对至少有一次备份的情 ...

  7. asp.net FromBody接收不到参数的解决方法

    今天改一个前端框架(angularjs,不兼容ie内核,需要修改),后台框架是已经写好了的,不用修改. 接口接收参数如下: [HttpPost] public async Task<Schedu ...

  8. #035 大数阶乘 PTA题目6-10 阶乘计算升级版 (20 分)

    实际题目 本题要求实现一个打印非负整数阶乘的函数. 函数接口定义: void Print_Factorial ( const int N ); 其中N是用户传入的参数,其值不超过1000.如果N是非负 ...

  9. bilibili弹幕爬取

    随便进入一个视频页面,打开开发者工具,清空network空间,进入XHR,刷新抓包. 双击查看弹幕

  10. python一直放弃到双数的day10

    今天接着来说那个新的大知识点,函数,函数中是可以传递一个数值的,这个数值简称为参数,对于参数,他可以是任意个数和任意类型(数据类型).参数的其中一种有位置传参,函数中的参数有几个,那么就要传入几个,传 ...