Project Euler 307 题解
主要是规避误差。即求
\]
微分一下得到递推式。然后根据斯特林近似(byd 这里还需要 \(1\) 后的第一项。。)
\]
然后在递推时记录 \(f_k=g_k\times \left(\frac{en}{k}\right)^{c_k}\) 即可转移。
注意代码里 \(n,k\) 是反的。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn=1e6+5;
// #define double long double
const double pi=acos(-1.0);
double f[maxn],e=0;int cnt[maxn];
double calc(int n,int k){
f[0]=1,f[1]=n,f[2]=(1.0*(n-1)*f[1]+n*f[0])/2.0;
double C=e*n/k;
while(f[2]>C)f[2]/=C,cnt[2]++;
for(int i=2;i<k;i++){
double T=(n-(i-1)/2.0)*f[i-1]/(i+1.0);
T+=(n-i)/(i+1.0)*f[i]*pow(C,cnt[i]-cnt[i-1]);
f[i+1]=T,cnt[i+1]=cnt[i-1];
while(f[i+1]>C)f[i+1]/=C,cnt[i+1]++;
// cout<<cnt[i+1]<<" "<<f[i+1]<<endl;
}
double ans=f[k]*pow(C,cnt[k]-k)*sqrt(2*pi*k)*(1+1/(12.0*k));
return 1.0-ans;
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
double z=1;
for(int i=1;i<=100;i++){
e+=z;if(i>0)z/=i;
}
int n,k;cin>>n>>k;
printf("%.10lf",calc(n,k));
return 0;
}
Project Euler 307 题解的更多相关文章
- project euler 169
project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...
- Python练习题 040:Project Euler 012:有超过500个因子的三角形数
本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divi ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
- 【Project Euler 8】Largest product in a series
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...
- Project Euler 第一题效率分析
Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...
- Python练习题 049:Project Euler 022:姓名分值
本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names sco ...
- Python练习题 048:Project Euler 021:10000以内所有亲和数之和
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...
随机推荐
- pycharm之常用插件
参考:http://pycharm.iswbm.com/zh_CN/latest/ 1. Key Promoter X 如果让我给新手推荐一个 PyCharm 必装插件,那一定是 Key Promot ...
- Mybatis【5】-- Mybatis多种增删改查那些你会了么?
前面我们学会了Mybatis如何配置数据库以及创建SqlSession,那怎么写呢?crud怎么写? 代码直接放在Github仓库[https://github.com/Damaer/Mybatis- ...
- seldom-platform:颠覆传统的自动化测试平台
seldom-platform:颠覆传统的自动化测试平台 seldom-platform是一个自动化测试平台,其特点是让会写代码的测试人员能够通过seldom框架高效地完成自动化用例的编写,并将剩下的 ...
- DOM元素高度获取踩坑
前情 最近在开发一个需求,需要做一个滚动列表展示当前中奖用户,但是列表每一项高度又不是固定的,每次滚动前需要先获取当前要滚动的块是多高才知道要滚动多少. 坑位 在开发这个滚动列表的时候发现滚着滚着就会 ...
- MeteoInfo-Java解析与绘图教程(六)
MeteoInfo-Java解析与绘图教程(六) 这一节主要说的是我们取到自动站的数据,如何通过插值,转化成格点数据,并绘制图层 //从数据库查询cimiss数据 List<Map<Str ...
- 腾讯云 TStor 私有云存储获统信+海光/兆芯官方认证
腾讯云 TStor 是一款分布式存储产品,致力于解决私有云.混合云下的各类存储需求.产品紧跟国内信创生态,持续加强自主可控能力.目前,TStor 已经支持国内主流国产操作系统和硬件,如中标麒麟操作系统 ...
- 【Javaweb】基础开发流程与介绍
本文档写于2022年7月29日,由于个人水平有限,可能存在一些问题,因此仅供参考 @萌狼蓝天 JavaWeb基础开发流程 1.确定系统和功能 在此以"宠物管理系统"为例,要开发一个 ...
- 会话丢失-NGINX配置之underscores_in_headers
1.描述问题NGINX代理某个web服务时,单机情况下也出现不停的要求认证的情况 初步分析去掉NGINX代理,直接访问服务,未出现上述情况: 进一步分析:查看经过NGINX的请求和直接访问服务请求区别 ...
- macOS 中有什么好用的虚拟机软件?
macOS 中有什么好用的虚拟机软件? https://www.zhihu.com/question/66366176/answer/268256386 问题:1.macOS是否有专门的虚拟机软件?或 ...
- Qt音视频开发40-ffmpeg采集桌面并录制
一.前言 之前用ffmpeg打通了各种视频文件和视频流以及本地摄像头设备的采集,近期有个客户需求要求将整个桌面屏幕采集下来,并可以录制保存成MP4文件,以前也遇到过类似的需求,由于没有搞过,也没有精力 ...