P2730 [USACO3.2] 魔板 Magic Squares 题解
一些废话
夜深人静的夜晚,我开了这道题。看起来,完成它是一件轻而易举的事。我想了想,打开Dev-C++,开始写代码。
然而,那时的我还不知道,我踏入了深渊......
咳咳,中二病犯了,前面的文字请忽略。
思路
题目要求最少操作次数,显然,我们要使用BFS来求解。
对于每个节点,接下来有最多三个子节点,用函数模拟即可。
因为要求输出操作序列,所以需要存储每个节点的父节点。
细节
我们还需要对魔板进行去重操作来剪枝。
这是因为:
由于BFS的特性,当一个魔板第一次出现时,得到它所需要的操作次数是最少的;如果它出现了多次,那么与首次出现相比,它所需的操作次数更多。从该魔板出发还原成目标魔板时,如果从第一个魔板出发,所用的总次数最少;而多次出现的必然比首次出现的所用的总次数多。
因此通过去重操作进行剪枝是必要的,这会使原本MLE的程序AC(作者亲身经历)。
别忘了输出60个字符就要换行。
另外,当目标模板与初始模板一致时,需要直接输出0,结束程序。
实现
变量等命名不规范,望见谅。
#include <cstdio>
#define N 10000005
#define fot(x,y,z) for(int x=y;x<=z;x++)
#define tof(x,y,z) for(int x=y;x>=z;x--)
int bd[9],bb[9];
int b2[9];
int q[N][9];
int dep[N];
int list[N];
char stk[N];
int fa[N];
bool exis[16777216];
void swap(int &x,int &y)
{
int temp=x;
x=y;
y=temp;
}
void A()
{
fot(i,1,4)
swap(bd[i],bd[9-i]);
}
void B()
{
int f[2];
f[0]=bd[4];
f[1]=bd[5];
tof(i,3,1)
bd[i+1]=bd[i];
fot(i,6,8)
bd[i-1]=bd[i];
bd[1]=f[0];
bd[8]=f[1];
}
void C()
{
int temp=bd[2];
bd[2]=bd[7];
bd[7]=bd[6];
bd[6]=bd[3];
bd[3]=temp;
}
void setts(int i)
{
fot(j,1,8)
q[i][j]=bd[j];
}
void getts(int i)
{
fot(j,1,8)
bd[j]=q[i][j];
}
bool judge()
{
fot(i,1,8)
{
if(bd[i]!=b2[i])
return 0;
}
return 1;
}
void print(int x)
{
printf("%d\n",dep[x]);
int i;
for(i=1;x;i++)
{
stk[i]=list[x]-1+'A';
x=fa[x];
}
int cnt=0;
tof(j,i-1,1)
{
cnt++;
printf("%c",stk[j]);
if(cnt%60==0)
printf("\n");
}
}
bool exist()
{
int number=0;
fot(i,1,8)
number=number*8+bd[i]-1;
if(exis[number])
return 1;
else
{
exis[number]=1;
return 0;
}
}
int main()
{
fot(i,1,8)
scanf("%d",&b2[i]);
fot(i,1,8)
bd[i]=i;
if(judge())
{
printf("0");
return 0;
}
int head=0,tail=0;
setts(0);
fa[0]=-1;
while(head<=tail)
{
getts(head);
fot(i,1,3)
{
if(i==1) A();
if(i==2) B();
if(i==3) C();
if(exist())
{
getts(head);
continue;
}
tail++;
list[tail]=i;
fa[tail]=head;
setts(tail);
dep[tail]=dep[head]+1;
if(judge())
{
print(tail);
return 0;
}
getts(head);
}
head++;
}
}
P2730 [USACO3.2] 魔板 Magic Squares 题解的更多相关文章
- 「一本通 1.4 例 2」[USACO3.2]魔板 Magic Squares
[USACO3.2]魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题 ...
- [USACO3.2]魔板 Magic Squares
松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...
- 洛谷 P2730 魔板 Magic Squares 解题报告
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- 哈希+Bfs【P2730】 魔板 Magic Squares
没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...
- 【简●解】 LG P2730 【魔板 Magic Squares】
LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...
- 洛谷 P2730 魔板 Magic Squares
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- P2730 魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- 洛谷P2730 [IOI]魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- 魔板 Magic Squares(广搜,状态转化)
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
随机推荐
- msde2000的关于无法访问lonle实例的master数据库恢复
某次关机重启后,lonele数据库实例无法访问,查看发现相应的服务(MSSQL$LONELE2.SQLAgent$LONELE2)无法启动. --------------------------- 服 ...
- 【懒狗必备】用bat命令解放双手
背景说明 每天上班,都需要打开本地的一些服务,比如redis.zk等. 作为懒狗,需要会利用工具. 于是我写了一个bat脚本,幼儿园水平: chcp 65001 title 一键启动本地环境脚本 st ...
- dotnet core微服务框架Jimu ~ 基础网关
网关提供外部访问内部微服务的统一入口,基于分布式和服务治理等功能特点,外部不能绕过网关调用内部微服务(框架本身提供外部可以直接访问内部微服务的功能,这里不作详细说明),外部通过 http 协议请求网关 ...
- PTA-1002
原先主要错误: 没有考虑到有关0的相关情况 观看的大佬代码 整理思路 无非就是在相同的指数的情况下,系数相加 因为最后是要从大到小输出来. 注意 要对最后的结果进行四舍五入: PTA的英语题对英语不好 ...
- ThreeJs-06详解灯光与阴影
一.gsap动画库 1.1 基本使用和原理 首先直接npm安装然后导入 比如让一个物体,x轴时间为5s 旋转同理 动画的速度曲线,可以在官网的文档找到 1.2 控制动画属性与方法 当然这里面也有一些方 ...
- 【MyBatis】学习笔记12:通过级联属性赋值解决多对一的映射关系
[Mybatis]学习笔记01:连接数据库,实现增删改 [Mybatis]学习笔记02:实现简单的查 [MyBatis]学习笔记03:配置文件进一步解读(非常重要) [MyBatis]学习笔记04:配 ...
- 使用docker-compose快速部署Prometheus+grafana环境
由于最近公司服务频繁出问题,老板很生气,下面的人都很不好过,于是老大让加一下业务监控,来观察线上数据状态.但是由于qa环境数据量太少,所以自己搭建了一套环境做相关监控,并且写了个脚本模仿生产上的数据, ...
- mapstruct坑:Internal error in the mapping processor: java.lang.NullPointerException at org.mapstruct.
错误描述 项目中如果使用了mapstruct框架,在使用Idea新版本后,启动会报错! Internal error in the mapping processor: java.lang.NullP ...
- python量化指标计算talib函数功能一览表
安装talib库:pip install talib 1 # 取个数据验证一下 2 set_token('') 3 data = history(symbol = 'SHSE.600519',freq ...
- 快速生成视频互动直播包含会议直播APP(Android)
阿里云服务器推荐购买99元 首先此应用基于腾讯云实时音视频TRTC.注册腾讯云https://console.cloud.tencent.com/trtc 并完成实名认证开始. 安卓直播高级版 包括直 ...