题目链接

Problem Description

Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.

— Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

  • For a light-side crystal of energy level ai, it emits +ai units of energy.
  • For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

Input

The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

Output

If there exists such a subset, output "yes", otherwise output "no".

Sample Input

2

5 9

1 1 2 3 4

N N N N N

6 -10

1 0 1 2 3 1

N L L L L D

Sample Output

yes

no

题意:

有n个宝石,每个宝石有自身的能量值,但是能量值可能为正也可能为负,有一个代表能量值正负的标记:

N:该宝石上的能量可以为正也可以为负

L:该宝石上的能量为正

D:该宝石上的能量为负

问这所有的宝石能不能构成能量为k的一个值。

分析:

这题目真的是又臭又长,说一堆没用的废话,瞬间感觉自己又经历了一场六级的阅读理解。。。心累啊

只怪自己比赛的时候脑子不够用,竟然用深搜在写,不超才怪呢。

这道题中的数组所组成的数构成了一个连续的区间。

如果之前的一堆数能够构成 [−a,b]中所有的整数的话,这时候来了一个数x,如果x只能取正值的话,并且有x<=b,那么就能构成[−a,b+x]内的所有的整数。

如果x只能取负值的话,并且有x<=a,那么就能构成[−a-x,b]内的所有的整数。

如果x可正可负的话,并且有x<=min(a,b),那么就能构成[−a-x,b+x]内的所有的整数。

有疑问的一点就是不是需要构成一个连续的区间吗?

这一点题目上的那个臭长的式子保证了这一点。

代码:

#include<iostream>
#include<stdio.h>
using namespace std;
int a[1009];
int main()
{
int T,n,k,sum1,sum2;///sum1表示正数的和,sum2表示负数的和
char ch;
scanf("%d",&T);
while(T--)
{
sum1=sum2=0;
scanf("%d%d",&n,&k);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int i=1; i<=n; i++)
{
scanf(" %c",&ch);
if(ch=='N')
{
sum1+=a[i];
sum2-=a[i];
}
else if(ch=='L')
sum1+=a[i];
else
sum2-=a[i];
}
if(k>=sum2&&k<=sum1)
printf("yes\n");
else
printf("no\n");
}
return 0;
}

2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 6 1008 HDU 6103 Kirinriki (模拟 尺取法)

    题目链接 Problem Description We define the distance of two strings A and B with same length n is disA,B= ...

  2. 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)

    题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...

  3. 2017ACM暑期多校联合训练 - Team 6 1003 HDU 6098 Inversion (模拟)

    题目链接 Problem Description Give an array A, the index starts from 1. Now we want to know Bi=maxi∤jAj , ...

  4. 2017ACM暑期多校联合训练 - Team 2 1008 HDU 6052 To my boyfriend (数学 模拟)

    题目链接 Problem Description Dear Liao I never forget the moment I met with you. You carefully asked me: ...

  5. 2017 ACM暑期多校联合训练 - Team 9 1008 HDU 6168 Numbers (模拟)

    题目链接 Problem Description zk has n numbers a1,a2,...,an. For each (i,j) satisfying 1≤i<j≤n, zk gen ...

  6. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  7. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  8. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  9. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

随机推荐

  1. Win server 2016 升级 Win server 2019 [测试验证]

    . 给win server 2016 挂在 win server 2019 的安装盘 2. 点击setup 直接进行安装操作  选择不下载更新, 然后到达输入序列号的界面 序列号为: WMDGN-G9 ...

  2. win8平板APP开发的教程文章

    http://blog.csdn.net/tcjiaan/article/details/7866595 基于C#的Metro工程如何引用C++的动态库——FIleNotFound解决办法: http ...

  3. 从装饰者模式的理解说JAVA的IO包

    1. 装饰者模式的详解 装饰者模式动态地将责任附加到对象上.若要扩展功能,装饰者提供了比继承更有弹性 的替代方案. 装饰者模式设计类之间的关系: 其 中Component是一个超类,ConcreteC ...

  4. webgl学习笔记四-动画

    写在前面 建议先阅读下前面我的三篇文章. webgl学习笔记一-绘图单点 webgl学习笔记二-绘图多点 webgl学习笔记三-平移旋转缩放   下面我们将讲解下如何让一个正方形动起来~不断擦除和重绘 ...

  5. HDU4473_Exam

    很考验智商的一个题目,赛后看完别人的题解后秒懂了. 首先定义一个函数f(x)表示a,b的有序组合情况数使得a*b为x的一个约数. 现在给定你一个n,要你求出f(1)+f(2)+……+f(n): 题目智 ...

  6. BZOJ3620 似乎在梦中见过的样子(kmp)

    不是很懂为什么数据范围要开的这么诡异,想到正解都不敢写.用类似NOI2014动物园的方法,对每个后缀求出类似next的数组即可. #include<iostream> #include&l ...

  7. IP组播技术

      1  概述 1.1  产生背景 传统的IP通信有两种方式:一种是在源主机与目的主机之间点对点的通信,即单播:另一种是在源主机与同一网段中所有其它主机之间点对多点的通信,即广播.如果要将信息发送给多 ...

  8. java学习4-Maven的发布war并部署到tomcat

    1.点击生成-->Build Artifacts ,具体下图下图 2.生成完后会在target下出现一个war文件 3.部署到tomcat 复制war文件到tomcat/webapps,重启to ...

  9. 【Revit API】Revit读取当前rvt的所有视图与其名称

    1)读取所有视图: public static ViewSet GetAllViews(Document doc) { ViewSet views = new ViewSet(); FilteredE ...

  10. NOIP模拟

    1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...