2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)
Problem Description
Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
— Wookieepedia
Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.
Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.
Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,
- For a light-side crystal of energy level ai, it emits +ai units of energy.
- For a dark-side crystal of energy level ai, it emits −ai units of energy.
Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.
Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.
Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.
First, the Council puts a special crystal of a1=1,b1=N.
Second, the Council has arranged the other n−1 crystals in a way that

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.
For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.
Input
The first line of the input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).
The next line contains n integer a1,a2,...,an (0≤ai≤103).
The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).
Output
If there exists such a subset, output "yes", otherwise output "no".
Sample Input
2
5 9
1 1 2 3 4
N N N N N
6 -10
1 0 1 2 3 1
N L L L L D
Sample Output
yes
no
题意:
有n个宝石,每个宝石有自身的能量值,但是能量值可能为正也可能为负,有一个代表能量值正负的标记:
N:该宝石上的能量可以为正也可以为负
L:该宝石上的能量为正
D:该宝石上的能量为负
问这所有的宝石能不能构成能量为k的一个值。
分析:
这题目真的是又臭又长,说一堆没用的废话,瞬间感觉自己又经历了一场六级的阅读理解。。。心累啊
只怪自己比赛的时候脑子不够用,竟然用深搜在写,不超才怪呢。
这道题中的数组所组成的数构成了一个连续的区间。
如果之前的一堆数能够构成 [−a,b]中所有的整数的话,这时候来了一个数x,如果x只能取正值的话,并且有x<=b,那么就能构成[−a,b+x]内的所有的整数。
如果x只能取负值的话,并且有x<=a,那么就能构成[−a-x,b]内的所有的整数。
如果x可正可负的话,并且有x<=min(a,b),那么就能构成[−a-x,b+x]内的所有的整数。
有疑问的一点就是不是需要构成一个连续的区间吗?
这一点题目上的那个臭长的式子保证了这一点。
代码:
#include<iostream>
#include<stdio.h>
using namespace std;
int a[1009];
int main()
{
int T,n,k,sum1,sum2;///sum1表示正数的和,sum2表示负数的和
char ch;
scanf("%d",&T);
while(T--)
{
sum1=sum2=0;
scanf("%d%d",&n,&k);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int i=1; i<=n; i++)
{
scanf(" %c",&ch);
if(ch=='N')
{
sum1+=a[i];
sum2-=a[i];
}
else if(ch=='L')
sum1+=a[i];
else
sum2-=a[i];
}
if(k>=sum2&&k<=sum1)
printf("yes\n");
else
printf("no\n");
}
return 0;
}
2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)的更多相关文章
- 2017ACM暑期多校联合训练 - Team 6 1008 HDU 6103 Kirinriki (模拟 尺取法)
题目链接 Problem Description We define the distance of two strings A and B with same length n is disA,B= ...
- 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)
题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...
- 2017ACM暑期多校联合训练 - Team 6 1003 HDU 6098 Inversion (模拟)
题目链接 Problem Description Give an array A, the index starts from 1. Now we want to know Bi=maxi∤jAj , ...
- 2017ACM暑期多校联合训练 - Team 2 1008 HDU 6052 To my boyfriend (数学 模拟)
题目链接 Problem Description Dear Liao I never forget the moment I met with you. You carefully asked me: ...
- 2017 ACM暑期多校联合训练 - Team 9 1008 HDU 6168 Numbers (模拟)
题目链接 Problem Description zk has n numbers a1,a2,...,an. For each (i,j) satisfying 1≤i<j≤n, zk gen ...
- 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)
题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...
- 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)
题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...
- 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)
题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
随机推荐
- PHP上传文件限制的大小
修改PHP上传文件大小限制的方法 1. 一般的文件上传,除非文件很小.就像一个5M的文件,很可能要超过一分钟才能上传完.但在php中,默认的该页最久执行时间为 30 秒.就是说超过30秒,该脚本就停止 ...
- 【C】树
1.子树是不相交的 2.除了根节点,每个节点有且仅有一个父节点 3.一颗n个节点的树有n-1条边 儿子兄弟表示法 满二叉树与完全二叉树 1.满二叉树是除了叶子节点,每一个节点都有两个子节点,并按顺序排 ...
- ubuntu 手动apache记录
1.下载apache tar -xvzf httpd.xx 解压 2.下载安装pcre Download PCRE from PCRE.org 解压,进入文件夹中 ./configure --pre ...
- 【linux使用】bash shell命令行常用快捷键
移动: Ctrl + A: 移动到当前编辑的命令行首, Ctrl + E: 移动到当前编辑的命令行尾, Ctrl + F 或 ->:按字符右移(往命令行尾部方向,前移) Ctrl + B 或 & ...
- 第206天:http协议终极详解---看这一篇就够了
HTTP简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送 ...
- Collection接口框架
1. Collection接口 其主要的UML类图: Collection接口继承自Iterable接口.Iterable接口中定义了Iterable方法,该方法会返回一个迭代器,用于遍历合集中的元素 ...
- 关于qt中的tr()函数
关于qt中的tr()函数 在论坛中漂,经常遇到有人遇到tr相关的问题.用tr的有两类人: (1)因为发现中文老出问题,然后搜索,发现很多人用tr,于是他也开始用tr (2)另一类人,确实是出于国际化的 ...
- Linux学习笔记二:Ubuntu安装SSH(Secure Shell)服务
Ubuntu默认是没有安装SSH(Secure Shell)服务,如果想要通过ssh链接到Ubuntu,我们需要手动安装ssh-server. SSH分客户端ssh-client,服务端ssh-ser ...
- sql case用法举例
用一条sql语句查出学生表成绩小于60为不及格60-80为良好80-90为优秀 select name, case when 成绩<60 then 不及格 when 成绩>=60 and ...
- python之选择排序
选择排序:比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个 ...