题目链接

Problem Description

Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.

— Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

  • For a light-side crystal of energy level ai, it emits +ai units of energy.
  • For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

Input

The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

Output

If there exists such a subset, output "yes", otherwise output "no".

Sample Input

2

5 9

1 1 2 3 4

N N N N N

6 -10

1 0 1 2 3 1

N L L L L D

Sample Output

yes

no

题意:

有n个宝石,每个宝石有自身的能量值,但是能量值可能为正也可能为负,有一个代表能量值正负的标记:

N:该宝石上的能量可以为正也可以为负

L:该宝石上的能量为正

D:该宝石上的能量为负

问这所有的宝石能不能构成能量为k的一个值。

分析:

这题目真的是又臭又长,说一堆没用的废话,瞬间感觉自己又经历了一场六级的阅读理解。。。心累啊

只怪自己比赛的时候脑子不够用,竟然用深搜在写,不超才怪呢。

这道题中的数组所组成的数构成了一个连续的区间。

如果之前的一堆数能够构成 [−a,b]中所有的整数的话,这时候来了一个数x,如果x只能取正值的话,并且有x<=b,那么就能构成[−a,b+x]内的所有的整数。

如果x只能取负值的话,并且有x<=a,那么就能构成[−a-x,b]内的所有的整数。

如果x可正可负的话,并且有x<=min(a,b),那么就能构成[−a-x,b+x]内的所有的整数。

有疑问的一点就是不是需要构成一个连续的区间吗?

这一点题目上的那个臭长的式子保证了这一点。

代码:

#include<iostream>
#include<stdio.h>
using namespace std;
int a[1009];
int main()
{
int T,n,k,sum1,sum2;///sum1表示正数的和,sum2表示负数的和
char ch;
scanf("%d",&T);
while(T--)
{
sum1=sum2=0;
scanf("%d%d",&n,&k);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int i=1; i<=n; i++)
{
scanf(" %c",&ch);
if(ch=='N')
{
sum1+=a[i];
sum2-=a[i];
}
else if(ch=='L')
sum1+=a[i];
else
sum2-=a[i];
}
if(k>=sum2&&k<=sum1)
printf("yes\n");
else
printf("no\n");
}
return 0;
}

2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 6 1008 HDU 6103 Kirinriki (模拟 尺取法)

    题目链接 Problem Description We define the distance of two strings A and B with same length n is disA,B= ...

  2. 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)

    题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...

  3. 2017ACM暑期多校联合训练 - Team 6 1003 HDU 6098 Inversion (模拟)

    题目链接 Problem Description Give an array A, the index starts from 1. Now we want to know Bi=maxi∤jAj , ...

  4. 2017ACM暑期多校联合训练 - Team 2 1008 HDU 6052 To my boyfriend (数学 模拟)

    题目链接 Problem Description Dear Liao I never forget the moment I met with you. You carefully asked me: ...

  5. 2017 ACM暑期多校联合训练 - Team 9 1008 HDU 6168 Numbers (模拟)

    题目链接 Problem Description zk has n numbers a1,a2,...,an. For each (i,j) satisfying 1≤i<j≤n, zk gen ...

  6. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  7. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  8. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  9. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

随机推荐

  1. cli 中php的配置和phpinfo不一样

    这是因为加载的php.ini的路径不一样 可以通过查看 php -i | grep php.ini 来确定两个加载的配置路径是一样的 win中没有grep的命令,可以把php -i 的内容重定向输出到 ...

  2. PDO笔记

    <?php/* * 查询操作主要是PDO::query().PDO::exec().PDO::prepare().PDO::query()主要是用于有记录结果返回的操作,特别是SELECT操作, ...

  3. BZOJ 1189 紧急疏散(二分+最大流)

    求出所有人撤离的最短时间.由于每扇门只能通过一次,所以不能简单用bfs来搞. 显然答案是有单调性的,考虑二分,问题变成了判断时间x所有人能不能撤离. 考虑最大流.对于每扇门,每个时间通过的人数最多为1 ...

  4. Codeforces 748D Santa Claus and a Palindrome

    雅礼集训期间我好像考完试就开始划水了啊 给出k个长度相同的字符串,每个串有一个权值,选出一些串连成一个回文串.使得选中的串的总权值最大. 如果选一个串,必须同时选一个对称的串.还有一个特殊情况是可以在 ...

  5. 【bzoj2121】字符串游戏 区间dp

    题目描述 给你一个字符串L和一个字符串集合S,如果S的某个子串在S集合中,那么可以将其删去,剩余的部分拼到一起成为新的L串.问:最后剩下的串长度的最小值. 输入 输入的第一行包含一个字符串,表示L. ...

  6. NetBeans IDE驱动报错The path to the driver executable must be set by the web driver.chrome.driver.system property......

    问题:defaulstUserDataPath=C:\\Users\\user1\\AppData\\Local\\Google\\Chrome\\User Data\\Defaul 编译失败 解决 ...

  7. pyhcarm github

    1.主题 介绍如何用Pycharm实打实的创建.运行.调试程序. 2.准备工作 Pycharm版本为2.7或者更高. 至少安装一个Python解释器,2.4到3.3均可 3.下载安装Pycharm 下 ...

  8. TCP(Transmission Control Protocol)学习笔记

    一.TCP(Transmission Control Protocol)原理介绍(参考维基百科) TCP连接包括三种状态:连接建立.数据传送和连接终止. TCP用三路握手(three-way hand ...

  9. 【刷题】洛谷 P3807 【模板】卢卡斯定理

    题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...

  10. Mysql局域网访问授权

    如果允许用户myuser从ip为192.168.1.1的主机连接到mysql服务器,并使用password作为密码 GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'1 ...