BZOJ3036

给定一张有向无环图,起点为1,终点为N,每个点i有ki条出边,从每个点走其中一条出边的概率是1/ki,求从1到N的期望步数

我们注意到一点,走每条边都是等概率的,那么就相当于

给定一个DAG,随机走,求起点到终点的路径长度期望

那么只需要知道经过每一条边的期望次数,乘以边权之后再求和就是答案了

问题就转化成了,求经过每一条边的期望次数的问题

经过这条边的期望次数就是经过这条边起点的期望次数除以这条边起点的出度

那么只需要求经过每一个点的期望次数

就好了

 #include<cstdio>
const int maxn=;
const int maxm=;
int n,m,cnt;
bool vis[maxn];
int g[maxn],out[maxn];
double f[maxn];
struct Edge
{
int t,next,v;
}e[maxm];
void insert(int u,int v,int w)
{
cnt++;e[cnt].t=v;e[cnt].next=g[u];g[u]=cnt;e[cnt].v=w;
}
long long read()
{
long long x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void dfs(int x)
{
if(!vis[x]) vis[x]=;
else return;
for(int tmp=g[x];tmp;tmp=e[tmp].next)
{
dfs(e[tmp].t);
f[x]+=e[tmp].v+f[e[tmp].t];
}
if(out[x]) f[x]/=out[x];
}
int main()
{
int u,v,w;
n=read();m=read();
for(int i=;i<=m;i++)
{
u=read();v=read();w=read();
insert(u,v,w);
out[u]++; //出度统计
}
dfs();
printf("%.2lf",f[]);
return ;
}

代码风格清新脱俗

数学&动态规划:期望DP的更多相关文章

  1. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

  2. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  3. 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP

    [BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...

  4. BZOJ 1426: 收集邮票 数学期望 + DP

    Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...

  5. 概率及期望DP小结

    资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空 ...

  6. 概率和期望dp

    概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题: ...

  7. 高斯消元与期望DP

    高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...

  8. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  9. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  10. POJ 2096 找bug 期望dp

    题目大意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcompon ...

随机推荐

  1. c# 画image

    这是一个例子,从数据库中读取然后赋伪彩,生成bitmap,给到imagebox控件(其image属性为平铺). https://pan.baidu.com/s/1hf_fGFHjGoDK_gywuhg ...

  2. C#高级编程 (第六版) 学习 第六章:运算符和类型强制转换

    第六章 运算符和类型强制转换 1,运算符 类别 运算符 算术运算符 + - * / % 逻辑运算符 & | ^ ~ && || ! 字符串连接运算符 + 增量和减量运算符 ++ ...

  3. 主从复制redis

    编辑主服务器的配置文件 注释下面一项 # slaveof  192.168.10.1  6379 主从复制 一主可以有多从,支持链式连级 一主多从 1:修改从服务器的配置文件/etc/redis.co ...

  4. Hadoop HDFS环境搭建

    1,首先安装JDK,下面如果JDK出现安装错误,可以卸载 卸载 1.卸载用 bin文件安装的JDK方法: 删除/usr/java目录下的所有东西 2.卸载系统自带的jdk版本方法: 查看自带的jdk: ...

  5. 自签证书 doesn't match any of the subject alternative names

    出现这个的原因是https中的域名或者IP,与证书中登记的不一致. 如果是自签证书的话,可以根据具体需要重新生成证书. 还有一种解决方案是在java中跳过这个检查. 绕过检查分两类,一个是绕过证书在C ...

  6. Communications link failure--分析之(JDBC的多种超时情况)

    本文是针对特定的情景下的特定错误,不是所有Communications link failure错误都是这个引起的,重要的区分特点是:程序是不是在卡主后两个小时(服务器的设置)后程序才感知到,才抛出了 ...

  7. 【计算机网络】NAT:网络地址转换

    NAT(Network Address Translation,网络地址转换)是1994年提出的.当在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但现在又想和因 ...

  8. 【数据库_Mysql】<foreach>标签在Mysql中的使用

    foreach属性 属性 描述 item 循环体中的具体对象.支持属性的点路径访问,如item.age,item.info.details.具体说明:在list和数组中是其中的对象,在map中是val ...

  9. Docker学习笔记二:Docker常用命令及提升拉取镜像的速度

    一.Docker命令: 1.docker images   //命令用来查看docker中所包含的镜像信息 2.docker ps -a    //命令用来查看docker中所包含所有容器信息(运行状 ...

  10. JavaWeb文件上传和下载

    文件上传和下载在web应用中非常普遍,要在jsp环境中实现文件上传功能是非常容易的,因为网上有许多用java开发的文件上传组件,本文以commons-fileupload组件为例,为jsp应用添加文件 ...