UVA 10972 RevolC FaeLoN(边-双连通+缩点)
很好的一道图论题,整整撸了一上午。。。
题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向边都变为有向边后强连通?显然是边-双连通!边连通的性质就是任意两点间存在边部重合的两条路,所以你懂的。。。
所以这个题的解法就是:求出原图的边-双连通分量后缩点,变成一棵bcc树。现在问题就变成了:给定一棵无向树,添加最少边使得该图强连通?这个问题在纸上画画大概能推出来。。。sum为所有叶子节点的个数,ans便是(sum+1)/ 2。。。求边-双连通的方法大白书说的很清楚了,先dfs标记所有桥,然后再dfs1一次,途中不经过桥就行。
还有一点,原图中可能本来就有孤立点(如sample 2中的点10),那么它所在的bcc点的度数为0,所以要在缩点后处理的时候处理一下孤立点。。。
另外还有一点。。。当原图本来就双连通的时候要特判ans=0。。。
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<fstream>
#include<sstream>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define LL long long
#define PB push_back
#define debug puts("**debug**")
using namespace std; const int maxn = 1111;
int n, m, u, v;
int pre[maxn], low[maxn], dfs_clock, bcc_cnt, bccno[maxn], d[maxn];
struct Edge
{
int to, flag;
};
vector<int> G[maxn];
vector<Edge> edges; inline void init()
{
CLR(d, 0);
REP(i, n) G[i].clear(); edges.clear();
} void add(int u, int v)
{
edges.PB((Edge){v, 0});
edges.PB((Edge){u, 0});
int nc = edges.size();
G[u].PB(nc-2);
G[v].PB(nc-1);
} int dfs(int u, int fa)
{
int lowu = pre[u] = ++dfs_clock;
int nc = G[u].size();
REP(i, nc)
{
int v = edges[G[u][i]].to;
if(!pre[v])
{
int lowv = dfs(v, u);
lowu = min(lowu, lowv);
if(lowv > pre[u]) edges[G[u][i]].flag = 1, edges[G[u][i]^1].flag = 1; //标记所有桥
}
else if(pre[v] < pre[u] && v != fa) lowu = min(lowu, pre[v]);
}
return low[u] = lowu;
} void dfs1(int u)
{
bccno[u] = bcc_cnt;
int nc = G[u].size();
REP(i, nc)
{
int v = edges[G[u][i]].to;
if(!bccno[v] && edges[G[u][i]].flag != 1) dfs1(v);//不经过桥
}
} void find_bcc()
{
CLR(pre, 0); CLR(bccno, 0);
dfs_clock = bcc_cnt = 0;
REP(i, n) if(!pre[i]) dfs(i, -1);
REP(i, n) if(!bccno[i]) bcc_cnt++, dfs1(i);
} int main()
{
while(~scanf("%d%d", &n, &m))
{
init();
int ans = 0;
REP(i, m)
{
scanf("%d%d", &u, &v); u--; v--;
add(u, v);
}
find_bcc();
if(bcc_cnt == 1)
{
puts("0");
continue;
}
REP(u, n) //缩点
{
int nc = G[u].size();
REP(i, nc)
{
int v = edges[G[u][i]].to;
if(bccno[u] != bccno[v]) d[bccno[u]]++;
}
}
FF(i, 1, bcc_cnt+1)
{
if(d[i] == 0) ans += 2; //孤立点
if(d[i] == 1) ans++;
}
printf("%d\n", (ans+1)/2);
}
return 0;
}
UVA 10972 RevolC FaeLoN(边-双连通+缩点)的更多相关文章
- UVA 10972 - RevolC FaeLoN(边-双连通分量)
UVA 10972 - RevolC FaeLoN option=com_onlinejudge&Itemid=8&page=show_problem&category=547 ...
- uva 10972 RevolC FaeLoN cdoj 方老师和农场
//自己写的第一发tarjan 解:先进行双连通分解并缩点,分解后一定是一颗树,设叶节点个数为n那么答案就是(n+1)/2 关于双连通分量求解:在跑tarjan时判断每个点连向父节点的边是否是桥,如果 ...
- UVA - 10972 RevolC FaeLoN
一道特别好的题qwq. 题目大意就是给你一个无向图,让你把边定向之后再加一些边使得这个图强连通,求最少需要加多少边. 一开始毫无头绪23333,数据范围让人摸不着头脑..... 然后开始画图,,,发现 ...
- UVA 10972 RevolC FaeLoN(边连通分量)
坑了我一天的题目..跑了20ms挂了,就知道有个小毛病= = 无向图转有向图判强连通. 首先要知道什么样的无向图可以转化为强连通图?连通分量(环)自然是可以的:那么扩大范围(存在割顶),发现点连通分量 ...
- hdu 4612 Warm up 双连通缩点+树的直径
首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...
- 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H
http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...
- POJ 3177 Redundant Paths (边双连通+缩点)
<题目链接> <转载于 >>> > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10141 Accepted: 503 ...
随机推荐
- elk系列5之syslog的模块使用【转】
preface rsyslog是CentOs系统自带的的一个日志工具,那么我们就配置logstash来接受rsyslog的日志. logstash的syslog模块 linux-node2上操作log ...
- vsftpd.conf 详解
//不允许匿名访问 anonymous_enable=NO //设定本地用户可以访问.注意:主要是为虚拟宿主用户,如果该项目设定为NO那么所有虚拟用户将无法访问 local_enable=YES // ...
- 9.Python3标准库--数据压缩与归档
''' 尽管现代计算机系统的存储能力日益增长,但生成数据的增长是永无休止的. 无损(lossless)压缩算法以压缩或解压缩数据花费的时间来换取存储数据所需要的空间,以弥补存储能力的不足. Pytho ...
- MVC开发模式与javaEE三层架构
1.MVC开发模式 1. M:Model,模型.JavaBean * 完成具体的业务操作,如:查询数据库,封装对象2. V:View,视图.JSP * 展示数据3. C:C ...
- css如何将div画成三角形
首先了解一下盒模型: 盒模型 先看一段代码: #div1{ height: 100px; border-style: solid; border-width: 100px 100px 100px 10 ...
- LeetCode741. Cherry Pickup
https://leetcode.com/problems/cherry-pickup/description/ In a N x N grid representing a field of che ...
- hdu 5468(dfs序+容斥原理)
Puzzled Elena Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- EF – 4.CRUD与事务
5.6.1 <Entity Framework数据更新概述> 首先介绍Entity Framework实现CRUD的基本方法,接着介绍了如何使用分部类增强和调整数据实体类的功能与行为特性 ...
- IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Inti Sets 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- pdb-不需要IDE也能调试
python中有个pdb模块,使python代码也可以像gdb那样进行调试,一般情况下pdb模块可以在代码内直接使用,也可以通过命令行参数的形式添加该模块进行调试(python -m pdb file ...