04-树4. Root of AVL Tree-平衡查找树AVL树的实现
对于一棵普通的二叉查找树而言,在进行多次的插入或删除后,容易让树失去平衡,导致树的深度不是O(logN),而接近O(N),这样将大大减少对树的查找效率。一种解决办法就是要有一个称为平衡的附加的结构条件:任何节点的深度均不得过深。有一种最古老的平衡查找树,即AVL树。
AVL树是带有平衡条件的二叉查找树。平衡条件是每个节点的左子树和右子树的高度最多差1的二叉查找树(空树的高度定义为-1)。相比于普通的二叉树,AVL树的节点需要增加一个变量保存节点高度。AVL树的节点声明如下:
typedef struct TreeNode *AvlTree;
typedef struct TreeNode *Position;
struct TreeNode
{
int Data;
AvlTree Left;
AvlTree Right;
int Height; //保存节点高度
};
只有一个节点的树显然是AVL树,之后我们向其插入节点。然而在插入过程中可能破坏AVL树的特性,因此我们需要对树进行简单的修正,即AVL树的旋转。
设a节点在插入下一个节点后会失去平衡,这种插入可能出现四种情况:
1. 对a的左儿子的左子树进行一次插入。(左-左)
2. 对a的左儿子的右子树进行一次插入。(左-右)
3. 对a的右儿子的左子树进行一次插入。(右-左)
4. 对a的右儿子的右子树进行一次插入。(右-右)
情形1和4,情形2和3分别是关于A节点的镜像对称,故在理论上是两种情况,而编程具体实现还是需要考虑四种。
单旋转--情形1和4:
双旋转--情形2和3:
情形2和3就是向上图中的子树Y插入一个节点,由上图可知,无论是左单旋还是右单旋都无法改变子树Y的高度。解决办法是再将子树Y分解成根节点和相应的左子树和右子树,然后对相应的节点做相应的旋转,如下图:
下面一个题即是考察AVL树的旋转:题目来源:http://www.patest.cn/contests/mooc-ds/04-%E6%A0%914
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
题目大意是先输入一个整数N,然后依次输入N个节点的值,以此建立AVL树,最后输出AVL树的根节点的值。
代码如下:
#include <cstdio>
#include <cstdlib> typedef struct TreeNode *AvlTree;
typedef struct TreeNode *Position;
struct TreeNode
{
int Data;
AvlTree Left;
AvlTree Right;
int Height;
}; AvlTree Insert(int x, AvlTree T); //插入新节点,必要时调整
Position SingleRotateWithLeft(Position a); //左单旋
Position SingleRotateWithRight(Position b); //右单旋
Position DoubleRotateWithLeft(Position a); //左右旋
Position DoubleRotateWithRight(Position b); //右左旋 int Max(int x1, int x2); //返回两个int中较大的
int Height(Position P); //返回一个节点的高度 int main()
{
int n, x;
AvlTree T = NULL; scanf("%d", &n);
for (int i = ; i < n; i++)
{
scanf("%d", &x);
T = Insert(x, T);
}
printf("%d\n", T->Data); //打印根节点的值 return ;
} AvlTree Insert(int x, AvlTree T)
{
if (T == NULL)
{
T = (AvlTree)malloc(sizeof(struct TreeNode));
T->Data = x;
T->Left = T->Right = NULL;
T->Height = ;
}
else if (x < T->Data) //向左子树插入
{
T->Left = Insert(x, T->Left);
if (Height(T->Left) - Height(T->Right) == ) //需调整
{
if (x < T->Left->Data)
T = SingleRotateWithLeft(T);
else
T = DoubleRotateWithLeft(T);
}
}
else if (x > T->Data) //向右子树插入
{
T->Right = Insert(x, T->Right);
if (Height(T->Right) - Height(T->Left) == ) //需调整
{
if (x > T->Right->Data)
T = SingleRotateWithRight(T);
else
T = DoubleRotateWithRight(T);
}
}
/*else值为x的节点已经存在树中,无需插入*/ /*更新节点高度*/
T->Height = Max(Height(T->Left), Height(T->Right)) + ;
return T;
} Position SingleRotateWithLeft(Position a)
{
Position b = a->Left;
a->Left = b->Right;
b->Right = a;
//更新a, b节点高度
a->Height = Max(Height(a->Left), Height(a->Right)) + ;
b->Height = Max(Height(b->Left), Height(b->Right)) + ; return b; /*新的根节点*/
} Position SingleRotateWithRight(Position b)
{
Position a = b->Right;
b->Right = a->Left;
a->Left = b;
//更新a,b节点高度
a->Height = Max(Height(a->Left), Height(a->Right)) + ;
b->Height = Max(Height(b->Left), Height(b->Right)) + ;
return a; /*新的根节点*/
} Position DoubleRotateWithLeft(Position a)
{
a->Left = SingleRotateWithRight(a->Left);
return SingleRotateWithLeft(a);
} Position DoubleRotateWithRight(Position b)
{
b->Right = SingleRotateWithLeft(b->Right);
return SingleRotateWithRight(b);
} int Max(int x1, int x2)
{
return (x1 > x2) ? x1 : x2;
} int Height(Position P)
{
if (P == NULL) //空节点高度为-1
return -;
return P->Height;
}
需要注意的细节是我们需要快速得到一个节点(包括空节点)的高度,所以我们需要些一个函数来处理空节点(空指针)的情况,而不是简单的Position->Height。
04-树4. Root of AVL Tree-平衡查找树AVL树的实现的更多相关文章
- 【PAT甲级】1066 Root of AVL Tree (25 分)(AVL树建树模板)
题意: 输入一个正整数N(<=20),接着输入N个结点的值,依次插入一颗AVL树,输出最终根结点的值. AAAAAccepted code: #define HAVE_STRUCT_TIMESP ...
- 详解平衡二叉树(AVL tree)平衡操作(图+代码)
* 左左就右旋,右右就左旋 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int max ...
- PAT甲级1066. Root of AVL Tree
PAT甲级1066. Root of AVL Tree 题意: 构造AVL树,返回root点val. 思路: 了解AVL树的基本性质. AVL树 ac代码: C++ // pat1066.cpp : ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***
1066 Root of AVL Tree (25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- HDU 2193 AVL Tree
AVL Tree An AVL tree is a kind of balanced binary search tree. Named after their inventors, Adelson- ...
- 数据结构和算法(Golang实现)(28)查找算法-AVL树
AVL树 二叉查找树的树高度影响了查找的效率,需要尽量减小树的高度,AVL树正是这样的树. 一.AVL树介绍 AVL树是一棵严格自平衡的二叉查找树,1962年,发明者Adelson-Velsky和La ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
- PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
随机推荐
- day-19 多种优化模型下的简单神经网络tensorflow示例
如下样例基于tensorflow实现了一个简单的3层深度学习入门框架程序,程序主要有如下特性: 1. 基于著名的MNIST手写数字集样例数据:http://yann.lecun.com/exdb/m ...
- python项目通过配置文件方式配置日志-logging
背景:项目中引入日志是必须的,这里介绍通过配置文件config.ini的方式配置日志 1.新建config.ini 2.添加配置 [loggers]keys=root,ProxyIP [handler ...
- 第四次ScrumMeeting博客
第四次ScrumMeeting博客 本次会议于10月28日(六)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕. 1. 每个人的工作(有Issue的内容和 ...
- 微信小程序---scroll-view在苹果手机上触底或触顶页面闪动问题
在项目开发中遇到一个关于scroll-view的的问题,具体如下: 项目要求是横向滚动,由于直接在scroll-view组件设置display:flex不生效,因此考虑直接在scroll-view下增 ...
- SVN服务器搭建及客户端配置
为什么要使用SVN? 在程序的编写过程中,每个程序员都会负责开发一个或多个模块,且开发中会生成很多不同的版本, 这就需要程序员有效的管理代码,在需要的时候可以迅速,准确取出相应的版本. Subvers ...
- Linux java项目冲突不能正常运行
部署项目,在windows环境部署到Tomcat能够正常运行,部署到Linux环境下只能访问一些html资源,不能正常运行. 解决步骤: 1.清除webapps目录下所有文件夹,将war包上传至web ...
- 过山车 HDU 2063 (二分图匹配裸题)
Problem Description RPG girls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车了.可是,过山车的每一排只有两个座位,而且还有条不成文的规矩,就是每个女生必须找个个男生 ...
- Flip the Bits(思维)
You are given a positive integer n. Your task is to build a number m by flipping the minimum number ...
- OrderSys---Spring 计划(第一天)
Sprint 计划会议: 目标: 1.了解需求分析书的内容 2.划分OrderSys的功能模块 3.开始制作原型 Sprint 3 Backlog细化: ID Name Est How to demo ...
- struts2文件上传突破2M限制
struts配置文件 <action name="upload" class="strutsFileUpload"> <result name ...