NTT模板


#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int MAXL=22;
const int MAXN=1<<MAXL;
const int Mod=998244353;
int rev[MAXN],A[MAXN],B[MAXN],C[MAXN];
int fast_pow(int a,int b){
int ans=1;
while(b){
if(b&1)ans=1ll*ans*a%Mod;
a=1ll*a*a%Mod;
b>>=1;
}
return ans;
}
void transform(int n,int *t,int typ){
for(int i=0;i<n;i++)
if(i<rev[i])swap(t[i],t[rev[i]]);
for(int step=1;step<n;step<<=1){
int gn=fast_pow(3,(Mod-1)/(step<<1));//3为998244353的原根
for(int i=0;i<n;i+=(step<<1)){
int g=1;
for(int j=0;j<step;j++,g=1ll*g*gn%Mod){
int x=t[i+j],y=1ll*g*t[i+j+step]%Mod;
t[i+j]=(x+y)%Mod;
t[i+j+step]=(x-y+Mod)%Mod;
}
}
}
if(typ==1)return;
for(int i=1;i<n/2;i++)swap(t[i],t[n-i]);
int inv=fast_pow(n,Mod-2);
for(int i=0;i<n;i++)t[i]=1ll*t[i]*inv%Mod;
}
void ntt(int p,int *A,int *B,int *C){
transform(p,A,1);
transform(p,B,1);
for(int i=0;i<p;i++)C[i]=1ll*A[i]*B[i]%Mod;
transform(p,C,-1);
}
int main(){
int n,m;scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++)scanf("%d",&A[i]);
for(int i=0;i<=m;i++)scanf("%d",&B[i]);
int p=1,l=0;
while(p<=n+m)p<<=1,l++;
for(int i=0;i<p;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
ntt(p,A,B,C);
for(int i=0;i<=n+m;i++)printf("%d ",C[i]);
return 0;
}

【模板】NTT的更多相关文章

  1. 模板 NTT 快速数论变换

    NTT裸模板,没什么好解释的 这种高深算法其实也没那么必要知道原理 #include <cstdio> #include <cstring> #include <algo ...

  2. hihocoder #1388 : Periodic Signal NTT&FFT

    传送门:hihocoder #1388 : Periodic Signal 先来几个大牛传送门:  (模板) NTT long long 版 解法一:因为我们知道FFT会精度不够,所以坚持用NTT,但 ...

  3. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  4. NTT模板

    NTT(快速数论变换)用到的各种素数及原根: https://blog.csdn.net/hnust_xx/article/details/76572828 NTT多项式乘法模板 #include&l ...

  5. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  6. 洛谷P4245 【模板】MTT(任意模数NTT)

    题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) . 系数对 pp 取模,且不保证 pp 可以分解成 ...

  7. 洛谷P3803 【模板】多项式乘法 [NTT]

    题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...

  8. FFT与NTT的模板

    网上相关博客不少,这里给自己留个带点注释的模板,以后要是忘了作提醒用. 以洛谷3803多项式乘法裸题为例. FFT: #include <cstdio> #include <cmat ...

  9. 多项式FFT/NTT模板(含乘法/逆元/log/exp/求导/积分/快速幂)

    自己整理出来的模板 存在的问题: 1.多项式求逆常数过大(尤其是浮点数FFT) 2.log只支持f[0]=1的情况,exp只支持f[0]=0的情况 有待进一步修改和完善 FFT: #include&l ...

随机推荐

  1. Centos环境下,执行gulp,显示执行成功,但找到不生成的压缩文件

    举例来说:以下是css文件夹下site.css文件为site.min.css,并且将生成的文件放在指定的目录下 //压缩站点css gulp.task('appallcss', function () ...

  2. 外国人专门写了一篇文章,来分析为什么go在中国如此火

    外国人专门写了一篇文章,来分析为什么go在中国如此火: <Why is Golang popular in China?> http://herman.asia/why-is-go-pop ...

  3. jQuery实际案例⑥——图片跟随鼠标、五角星评分案例

    一.图片跟随鼠标移动 1.要求:鼠标移动到哪,图片就要跟到哪 2.用到的事件:首先监听鼠标:$(document).mousemove(function(event){ }); //此时可以获取鼠标距 ...

  4. transform对定位元素的影响

    1.温故知新 absolute:生成绝对定位的元素,相对于除position:static 定位以外的第一个有定位属性的父元素进行定位,若父元素没有定位属性则相对于浏览器窗口的左上角定位,定位的元素不 ...

  5. ubuntu 16.04网速监控脚本

    #!/bin/bashif [ $# -ne 1 ];thendev="enp2s0"elsedev=$1fi while :doRX1=`/sbin/ifconfig $dev ...

  6. ML之多元线性回归

    转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系, ...

  7. UVA-10047 The Monocycle (图的BFS遍历)

    题目大意:一张图,问从起点到终点的最短时间是多少.方向转动也消耗时间. 题目分析:图的广度优先遍历... 代码如下: # include<iostream> # include<cs ...

  8. 三大平衡树(Treap + Splay + SBT)总结+模板

    Treap树 核心是 利用随机数的二叉排序树的各种操作复杂度平均为O(lgn) Treap模板: #include <cstdio> #include <cstring> #i ...

  9. C#学习历程(四)[实际问题]

    >>无法直接启动带有”类库输出类型”的项目 在编辑界面的右侧会出现[解决方案资源管理器],里面显示我们的程序项目和所有代码文件. 右键点击项目,在右键菜单中选择[属性] 一般导致该问题都是 ...

  10. C# Http方式下载文件到本地类

    直接上代码: using System; using System.Collections.Generic; using System.Linq; using System.Text; using S ...