服务器重装和配置:Ubuntu16.04 + Anaconda3 + GTX1080驱动 + CUDA8 + cuDNN + 常用工具安装
前一篇[基于Ubuntu16.04的GeForce GTX 1080驱动安装,遇到的问题及对应的解决方法]是在机器原有系统上安装GPU驱动,后来决定备份数据后重装系统,让服务器环境更干净清爽。
1.安装操作系统Ubuntu16.04
采用U盘启动安装的方式:
=> 插入系统U盘,开启电源
=> 按Delete键进入BIOS界面,在"Boot"中把"USB KEY"设到最高优先级(把Hard Disk设置到第二优先级,装好系统后拔掉U盘就会直接从硬盘启动),然后在"Save & Exit"中选择保存修改并重启
=> 按F11键进入选择系统菜单界面,这里选"Install Ubuntu"
=> 按照提示安装系统,选择语言,地区,划分分区等,这里是120G的sda,1T的sdb,32G内存,大致划分方法如下:
sda
/boot 1G
SWAP 32G
/ (120-1-32)G
sdb
/home 1T
2.更新源
安装好系统后,先更新源,方便后面能比较快地下载各种软件包。
备份/etc/apt/sources.list,然后将内容全部替代为:
# deb cdrom:[Ubuntu 16.04 LTS _Xenial Xerus_ - Release amd64 (20160420.1)]/ xenial main restricted # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
# newer versions of the distribution. deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
##测试版源
deb http://mirrors.aliyun.com/ubuntu/ xenial-proposed main restricted universe multiverse
# 源码
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
##测试版源
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-proposed main restricted universe multiverse
# Canonical 合作伙伴和附加
deb http://archive.canonical.com/ubuntu/ xenial partner
deb http://extras.ubuntu.com/ubuntu/ xenial main
然后进行更新:
$ sudo apt-get update
$ sudo apt-get upgrade
3.安装常用的工具
(1)terminator
$ sudo apt-get install terminator
=> 退出之前的终端,再重新ctrl+alt+t就可以进入新装的terminator
=> 在Preference设置终端背景,透明度,字体类型和大小等等
(2)vim
$ sudo apt-get install vim
(3)ssh
$ sudo apt-get install openssh-server
(本地机器ssh免密码登录服务器设置参考:http://www.cnblogs.com/bymo/p/7390619.html)
(4)Sogou Pinyin输入法
下载deb安装包然后 sudo dpkg -i sogoupinyin_2.1.0.0086_amd64.deb
(详细参考:http://blog.csdn.net/leijiezhang/article/details/53707181)
(5)google-chrome
# 将下载源加入到系统的源列表
$ sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.list.d/
#导入谷歌软件的公钥,用于下面步骤中对下载软件进行验证。如果顺利的话,命令将返回“OK”
$ wget -q -O - https://dl.google.com/linux/linux_signing_key.pub | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install google-chrome-stable
#启动
$ /usr/bin/google-chrome-stable
安装参考:https://www.cnblogs.com/don9/p/7289830.html
如果启动失败,解决方法参考:http://blog.csdn.net/qq_22551385/article/details/78172178
4.编程/深度学习环境配置
(1) Anaconda3
=> 从清华大学开源软件镜像站下载安装包 Anaconda3-5.0.1-Linux-x86_64.sh
=> 官方安装指南:https://docs.anaconda.com/anaconda/install/linux
$ sudo bash Anaconda3-5.0.-Linux-x86_64.sh
期间会请求授权信息,输入yes;提示安装路径,默认是/home/<user>/anaconda3,本文修改到/opt/anaconda3;提示是否要将Anaconda的安装路径添加到PATH环境变量中,输入yes
(安装和其它测试参考:http://blog.csdn.net/huangjuegeek/article/details/73556763;http://blog.csdn.net/xiaerwoailuo/article/details/70054429)
(2)安装GTX1080驱动(nvidia367.27)
sudo add-apt-repository ppa:graphics-drivers/ppa #第一次运行如果出现警告,按回车继续
sudo apt-get update
sudo apt-get install nvidia-
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev
之后重启系统让GTX1080显卡驱动生效,然后用nvidia-smi命令可以查看到显卡设备
(之前这篇[基于Ubuntu16.04的GeForce GTX 1080驱动安装,遇到的问题及对应的解决方法]遇到那么多问题主要是因为之前的系统装过GTX1060的驱动,而本次在全新系统中的安装是比较顺畅的)
(3)下载和安装CUDA
=> GTX1080对应下载CUDA8(注意要登录账号才能下载),选择Ubuntu16.04系统runfile安装方案,1.4G
=> 执行 sudo sh cuda_8.0.27_linux.run 进行安装,安装过程中会有下面几个安装提示,后面的warning可以忽略
-------------------------------------------------------------
Do you accept the previously read EULA?
accept/decline/quit: accept Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?
(y)es/(n)o/(q)uit: n Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]: Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y Enter CUDA Samples Location
[ default is /home/algsuper ]: Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...
Missing recommended library: libXi.so
Missing recommended library: libXmu.so Installing the CUDA Samples in /home/algsuper ...
Copying samples to /home/algsuper/NVIDIA_CUDA-.0_Samples now...
Finished copying samples. ===========
= Summary =
=========== Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-8.0
Samples: Installed in /home/algsuper, but missing recommended libraries Please make sure that
- PATH includes /usr/local/cuda-8.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA. ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run -silent -driver Logfile is /tmp/cuda_install_2761.log
安装完毕后,再声明一下环境变量,并将其写入到 ~/.bashrc 的尾部:
export PATH=$PATH:/usr/local/cuda-8.0/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
保存后,在终端输入 source ~/.bashrc 命令使修改生效.
后面的样例测试参考http://www.cnblogs.com/bymo/p/7987415.html
(4)安装cuDNN
=> 下载页面:https://developer.nvidia.com/rdp/cudnn-download
同样需要登录账号才能下载,勾选同意License之后会出现各种版本的下载链接,前面装的是cuda_8.0.27所以这里对应下载cuDNN v6.0 (April 27, 2017), for CUDA 8.0,选择cuDNN v6.0 Library for Linux下载tgz文件)
=> 安装指导页面:http://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
解压安装包,将相关链接库复制到cudn安装路径下的对应目录中:
# Unzip the cuDNN package.
$ tar -xzvf cudnn-8.0-linux-x64-v6..tgz
$ cd cuda
# Copy the following files into the CUDA Toolkit directory.
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
(5)virtualenv
sudo apt-get install python-virtualenv
虚拟环境virtualenv的配置和使用参考:http://www.cnblogs.com/bymo/p/7341338.html
后面有空的时候再配置一下Vim,先这样啦,晚安~
==========================================================
补充:
sudo pip install ipython
sudo pip install jupyter
服务器重装和配置:Ubuntu16.04 + Anaconda3 + GTX1080驱动 + CUDA8 + cuDNN + 常用工具安装的更多相关文章
- (转)深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX10 ...
- 深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直 ...
- 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
不多说,直接上干货! 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
- (解决某些疑难杂症)Ubuntu16.04 + NVIDIA显卡驱动 + cuda10 + cudnn 安装教程
一.NVIDIA显卡驱动 打开终端,输入: sudo nautilus 在新打开的文件夹中,进入以下路径(不要用命令行): 左下角点计算机,lib,modules 这时会有几个文件夹,对每个文件夹都进 ...
- 深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow
接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡 ...
- wsl环境下配置ubuntu16.04
wsl环境下配置ubuntu16.04 在公司同事的安利下,终于给自己用了8年的老笔记本(戴尔XPS L502X)换上了固态硬盘(WD500G,SATA3接口) 当然,系统重装了一遍,所有的软件也都没 ...
- Ubuntu16.04下搜狗输入法、Sublime Text 3的安装
Ubuntu16.04下搜狗输入法.Sublime Text 3的安装 一.搜狗输入法 1. 安装中文语言 默认在Ubuntu16.04下是没有中文的,需要安装中文,在System Settings- ...
- (原)使用1080Ti显卡时安装ubuntu16.04.1及驱动的步骤
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6811328.html 参考网址: http://www.cnblogs.com/darkknightz ...
- Ubuntu16.04 Nvidia显卡驱动简明安装指南
简单得整理了一下Ubuntu16.04 Nvidia显卡驱动的安装步骤: 查看当前系统显卡参数: sudo lspci | grep -i nvidia 删除之前的驱动: sudo apt-get - ...
随机推荐
- getJson同步
$.ajaxSettings.async = false;//在执行之前加$.ajaxSettings.async = false; (同步执行) function get_no_order_ar ...
- 《面向对象的JavaScript》读书笔记
发现了2004年出版的一本好书,用两天快速刷了一遍,草草整理了一下笔记,在此备忘. 类:对象的设计蓝图或制作配方. 对象 === 实例 :老鹰是鸟类的一个实例 基于相同的类创建出许多不同的对象,类更多 ...
- RabbitMQ 安装使用教程
环境 CentOS7 + Python3.5 yum -y install epel-release erlang socat cd /usr/local/src wget http://www.ra ...
- ThreadLocal 从源码角度简单分析
目录 ThreadLcoal源码浅析 ThreadLocal的垃圾回收 Java引用 ThreadLocal的回收 各线程中threadLocalMap的回收 内存泄露问题 总结 参考 ThreadL ...
- NuGet version
https://stackoverflow.com/questions/15964935/get-nuget-exe-version-from-command-line Typing nuget he ...
- maven 本地仓库的配置
<?xml version="1.0" encoding="UTF-8"?> <!--Licensed to the Apache Softw ...
- JVM与垃圾回收机制(GC)和类的生命周期
JVM运行时数据区 GC(垃圾回收机制) 什么是垃圾回收机制: 在系统运行过程中,会产生一些无用的对象,这些对象占据着一定的内存,如果不对这些对象清理回收无用的是对象,可能会导致内存的耗尽,所以垃圾回 ...
- vue下个兄弟节点
checkOne(e) { e.currentTarget.nextElementSibling.style.background = 'red' }
- em和px的区别一次彻底搞清楚!
在国内网站中,包括三大门户,以及“引领”中国网站设计潮流的蓝色理想,ChinaUI等都是使用了px作为字体单位.只有百度好歹做了个可调的表率.而 在大洋彼岸,几乎所有的主流站点都使用em作为字体单位, ...
- Go连接MySql数据库Error 1040: Too many connections错误解决
原文:https://my.oschina.net/waknow/blog/205654 摘要: 使用Go链接数据库时,由于连接释放不当会在一段时间以后产生too many connections的错 ...