梅森素数

定义:

  • if m是一个正整数 and 2^m-1是一个素数 then m是素数
  • if m是一个正整数 and m是一个素数 then M(m)=2^m-1被称为第m个梅森数
  • if p是一个素数 and M(p)是一个素数 then M(p)被称为梅森素数

Lucas-Lehmer判定法:判定一个梅森数是否是梅森素数

设p是素数,第p个梅森数为M(p)为2^p-1,r1 = 4,对于k >= 2

r(k) = r(k+1)^2-2(modM(p)), 0 <= r(k) <= M(p)

可以得到r(k)序列,则有M(p)是素数,当且仅当r(p-1) = 0(mod M(p))

推论:设p是素数,M(p)为第p个梅森数,则算法复杂度为O(n^3)

梅森素数 - nefu 120

思路:R.1 = 4;R.k = (R.k-1 ^ 2 - 2) % Mp;

如果R.p-1 == 0,则是梅森素数,否则不是。

特殊判断:p == 2,即Mp = 3是梅森素数。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib> using namespace std;
typedef long long ll; ll multi(ll a, ll b, ll m)
{
ll ret = 0;
while(b>0)
{
if(b&1)
{
ret = (ret+a)%m;
}
b >>= 1;
a = (a<<1)%m;
}
return ret;
}
int main()
{
ll sum = 1, data[66], tmp;
int n, p;
data[1] = 4;
cin >> n;
while(n--)
{
sum = 1;
cin >> p;
sum <<= p;
sum -= 1;
for(int i = 2; i <= p-1; i++)
{
tmp = multi(data[i-1],data[i-1],sum);
data[i] = (tmp-2)%sum;
}
if(p == 2)
cout << "yes" << endl;
else
{
if(data[p-1] == 0)
cout << "yes" <<endl;
else
cout << "no" << endl;
}
}
return 0;
}

模板:

long long multi(long long a, long long b, long long m){//实现a * b % m的操作,用2 * 3 = 6模拟一下就懂了
long long ans = 0;
while(b > 0){
if(b & 1) ans = (ans+a) % m;
b >>= 1;
a = (a<<1) % m;
}
return ans;
}
//判断是否是梅森素数
bool is_msPrime(int p){
long long r[70];
long long m = 1;
m <<= p; m -=1;//求出Mp;
r[1] = 4LL;
if(p == 2) return true;
for(int i = 2; i <= p-1; ++i)
r[i] = (multi(r[i-1],r[i-1],m)-2) % m;
if(r[p-1] == 0) return true;
return false;
}

梅森素数应用 nefu 120的更多相关文章

  1. nefu 120 梅森素数

    题意:给出p(1<p<=62),让你求Mp=2^p-1是否为梅森素数. 梅森素数:若p为素数,且Mp=2^p-1也是素数,则Mp为梅森素数.若p为合数,Mp=2^p-1一定为合数若p为素数 ...

  2. 梅森素数 判定总结 - Lucas-Lehmer算法 & Miller-rabin算法

    梅森素数 定义: if m是一个正整数 and 2^m-1是一个素数 then m是素数 if m是一个正整数 and m是一个素数 then M(m)=2^m-1被称为第m个梅森数 if p是一个素 ...

  3. Sicily-1009 梅森素数

    一.梅森素数 素数有无穷多个,却只有极少量的素数能表示成2p-1(p为素数)的形式.在不大于257的素数中,当p=2.3.5.7.13.17.19.31.67.127.257时,2p-1是素数,其它都 ...

  4. 加入GIMPS项目,寻找梅森素数!

    截止到目前为止人类共找到了50个梅森素数,其中最后16个梅森素数都是通过GIMPS项目找到的. 为了激励人们寻找梅森素数和促进网格技术发展,总部设在美国旧金山的电子前沿基金会(EFF)于1999年3月 ...

  5. Codeforces 225E 梅森素数

    注:梅森素数,数组表示的是2^n-1的n,指数. #include <stdio.h> #include <math.h> ; ; typedef long long ll; ...

  6. LA2955 Vivian难题——梅森素数

    题意 输入 $k$(1 \leq k \leq 100)个正整数 $p_1, p_2, ..., p_k$(1 < p_i < 2{31}),找出 $k$ 个非负整数 $e_i$ 使得 $ ...

  7. java实现第四届蓝桥杯梅森素数

    梅森素数 题目描述 如果一个数字的所有真因子之和等于自身,则称它为"完全数"或"完美数" 例如:6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 ...

  8. nefu120梅森素数

    #include<iostream> #include<cstdio> using namespace std; typedef long long ll; const int ...

  9. Project Euler 97 :Large non-Mersenne prime 非梅森大素数

    Large non-Mersenne prime The first known prime found to exceed one million digits was discovered in ...

随机推荐

  1. Django 框架搭建入门案例

    1. 什么是 web 框架 对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端; # 示例: import socket def handle_re ...

  2. 观 浅谈HTTP中Get与Post的区别

    看完解决了一些模糊不清的.错误的理解.

  3. UVA11426 GCD - Extreme (II)---欧拉函数的运用

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. Girls' research---hdu3294(回文子串manacher)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3294 给出一个字符串和加密的字符规律 例如 c abcba c代表把串中的c改成a,d改成b... b ...

  5. python常见模块之time模块

    一.模块简介 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们运行“type(tim ...

  6. Android在使用WebView时,通过Javascript调用JAVA函数

    webView = (WebView) findViewById(R.id.article_webview); //WebView启用Javascript脚本运行 webView.getSetting ...

  7. 深入浅出MySQL-DDL语句

    DDL语句 DDL是数据定义语言的缩写,简单来说,就是对数据库内部的对象进行创建.删除.修改等操作的语言.它和DML(数据操纵语言)的最大区别是DML知识对表内部的数据操作,而不涉及表的定义.结构的修 ...

  8. windows脚本-CMD和Batch

    一.DOS,CMD和batch DOS是磁盘操作系统(英文:Disk Operating System)的缩写,是个人计算机上的一类操作系统.从1981年直到1995年的15年间,DOS在IBM PC ...

  9. Git添加本地项目出现fatal: unable to get credential storage lock: File exists

    把本地项目初始化之后上传到github上出现问题:fatal: unable to get credential storage lock: File exists 解决办法:是因为我上传用的git帐 ...

  10. 从原型链看DOM--Element类型

    Element类型用于表现XML或HTML元素,提供对元素标签名,子节点及特性的访问.原型链的继承关系为 某节点元素.__proto__->(HTML某元素Element.prototype)- ...