GPU编程自学3 —— CUDA程序初探
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题。这里主要记录自己的GPU自学历程。
目录
- 《GPU编程自学1 —— 引言》
- 《GPU编程自学2 —— CUDA环境配置》
- 《GPU编程自学3 —— CUDA程序初探》
- 《GPU编程自学4 —— CUDA核函数运行参数》
- 《GPU编程自学5 —— 线程协作》
- 《GPU编程自学6 —— 函数与变量类型限定符》
- 《GPU编程自学7 —— 常量内存与事件》
三、 CUDA程序初探
3.1 主机与设备
通常将CPU及其内存称之为主机,GPU及其内存称之为设备。
如下图所示,新建一个NVIDIA CUDA工程,并命名为 “1-helloworld”
之后发现项目里多了一个 “kernel.cu”的文件,该文件内容是一个经典的 矢量相加 的GPU程序。
可以暂时全部注释该代码,并尝试编译运行下面的我们经常见到的编程入门示例:
#include <iostream>
int main()
{
std::cout<<"Hello, World!"<<std::endl;
system("pause");
return 0;
}
这看起来和普通的C++程序并没什么区别。 这个示例只是为了说明CUDA C编程和我们熟悉的标准C在很大程度上是没有区别的。 同时,这段程序直接运行在 主机上。
接下来,我们看看如何使用GPU来执行代码。如下:
#include <iostream>
__global__ void mkernel(void){}
int main()
{
mkernel <<<1,1>>>();
std::cout<<"Hello, World!"<<std::endl;
system("pause");
return 0;
}
与之前的代码相比, 这里主要增加了
- 一个空的函数mkernel(), 并带有修饰符 global
- 对空函数的调用, 并带有修饰符 <<<1,1>>>
_global_ 为CUDA C为标准C增加的修饰符,表示该函数将会交给编译设备代码的编译器(NVCC)并最终在设备上运行。 而 main函数则依旧交给系统编译器(VS2013)。
其实,CUDA就是通过直接提供API接口或者在语言层面集成一些新的东西来实现在主机代码中调用设备代码。
3.2 第一个GPU程序: 矢量相加
下面主要通过代码解读的形式来进行我们的第一个GPU程序。
程序遵循以下流程:
主机端准备数据 -> 数据复制到GPU内存中 -> GPU执行核函数 -> 数据由GPU取回到主机
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
// 接口函数: 主机代码调用GPU设备实现矢量加法 c = a + b
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
// 核函数:每个线程负责一个分量的加法
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x; // 获取线程ID
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
int c[arraySize] = { 0 };
// 并行矢量相加
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",
c[0], c[1], c[2], c[3], c[4]);
// CUDA设备重置,以便其它性能检测和跟踪工具的运行,如Nsight and Visual Profiler to show complete traces.traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
return 0;
}
// 接口函数实现: 主机代码调用GPU设备实现矢量加法 c = a + b
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// 选择程序运行在哪块GPU上,(多GPU机器可以选择)
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// 依次为 c = a + b三个矢量在GPU上开辟内存 .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// 将矢量a和b依次copy进入GPU内存中
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// 运行核函数,运行设置为1个block,每个block中size个线程
addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
// 检查是否出现了错误
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// 停止CPU端线程的执行,直到GPU完成之前CUDA的任务,包括kernel函数、数据拷贝等
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// 将计算结果从GPU复制到主机内存
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
参考资料:
- 《CUDA by Example: An Introduction to General-Purpose GPU Programming》 中文名《GPU高性能编程CUDA实战》
GPU编程自学3 —— CUDA程序初探的更多相关文章
- GPU编程自学4 —— CUDA核函数运行参数
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...
- GPU编程自学2 —— CUDA环境配置
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...
- GPU编程自学7 —— 常量内存与事件
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...
- GPU编程自学6 —— 函数与变量类型限定符
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...
- GPU编程自学5 —— 线程协作
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...
- GPU编程自学1 —— 引言
深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题.这里主要记录自己的GPU自学历程. 目录 <GPU编程自学1 -- 引言> <GPU编程自学2 -- CUD ...
- 第一篇:GPU 编程技术的发展历程及现状
前言 本文通过介绍 GPU 编程技术的发展历程,让大家初步地了解 GPU 编程,走进 GPU 编程的世界. 冯诺依曼计算机架构的瓶颈 曾经,几乎所有的处理器都是以冯诺依曼计算机架构为基础的.该系统架构 ...
- GPU 编程入门到精通(五)之 GPU 程序优化进阶
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙 ...
- GPU/CUDA程序初体验 向量加法
现在主要的并行计算设备有两种发展趋势: (1)多核CPU. 双核,四核,八核,...,72核,...,可以使用OpenMP编译处理方案,就是指导编译器编译为多核并行执行. (2)多线程设备(GP)GP ...
随机推荐
- rocketMQ基本理解
消息中间件需要解决哪些问题? Publish/Subscribe 发布订阅是消息中间件的最基本功能,也是相对于传统RPC通信而言. Message Priority 规范中描述的优先级是指在一个消息队 ...
- Visual Studio 2010生成解决方案时,导致C盘空间越来越小
为了从根本上解决问题,还是去掉智能跟踪选项吧,方案: VS2010-->工具-->选项-->IntelliTrance-->将“启用IntelliTrace”勾选去掉--> ...
- COJS:1829. [Tyvj 1728]普通平衡树
★★★ 输入文件:phs.in 输出文件:phs.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需 ...
- centos 查询mysql配置文件位置
具体指令: 1.which mysqld (”which 文件名“ : 搜索命令所在路径及别名) 2./usr/sbin/mysqld --verbose --help | grep -A 1 'D ...
- MapReduce实现共同朋友问题
答案: package com.duking.mapreduce; import java.io.IOException; import java.util.Set; import java.util ...
- 6.scala中的包
版权申明:转载请注明出处. 文章来源:http://bigdataer.net/?p=287 排版乱?请移步原文获得更好的阅读体验 1.基础特性 scala中的包和java中的包类似,都是用来在大型工 ...
- 秒懂算法2——选择排序(C#实现)
算法思路: 每趟走访元素揪出一个最小(或最大)的元素,和相应位置的元素交换.(用数组{6,9,13,2,4,64} 举例) {},{6 9 13 [2] 4 64} //第一趟,揪出2 {2} ...
- NPM Scripts 2 -- rimraf copyfiles imagemin usemin htmlmin uglifyjs
NPM Scripts Part 2 Objectives and Outcomes In this exercise you will learn to build a distribution f ...
- angular2 自定义双向绑定属性
import { Component, OnInit, Output, Input, EventEmitter } from '@angular/core'; @Component({ selecto ...
- linux修改系统时间时区
修改时间: date -s "2017-08-10 17:00:00" clock -w 修改时区: 方法一: ln -sf /usr/share/zoneinfo/Asia/Sh ...