题面

传送门

题解

调得咱自闭了……

不难发现这就是个李超线段树,不过因为这里加入的是线段而不是直线,所以得把线段在线段树上对应区间内拆开之后再执行李超线段树的操作,那么复杂度就是\(O(n\log^2n)\)

以上是题解,以下是吐(zang)槽(hua)

为什么我插入竖直线段的时候会出现\(l=r\)且\(l\times k+b\neq r\times k+b\)的情况呢……为什么我本地测会突然\(RE\)加了个\(puts("qwq")\)就能输出了呢……

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int M=39989,L=1e9,N=1e5+5;
struct node{
node *lc,*rc;double b,k;bool flag;int id;
inline void ins(R double bb,R double kk,R int ii){b=bb,k=kk,id=ii,flag=1;}
inline double calc(const R int &x){return k*x+b;}
}pool[N<<2],*rt;int tot;
int n,q,id,ii,ql,qr,res,x;double b,k,bb,kk,mx;
inline node *newnode(){return &pool[tot++];}
void build(node* &p,int l,int r){
p=newnode();if(l==r)return;
int mid=(l+r)>>1;
build(p->lc,l,mid),build(p->rc,mid+1,r);
}
void update(node *p,int l,int r,double b,double k,int id){
if(ql<=l&&qr>=r){
if(!p->flag)return p->ins(b,k,id),void();
double lv1=l*k+b,rv1=r*k+b,lv2=p->calc(l),rv2=p->calc(r);
if(lv1<=lv2&&rv1<=rv2)return;
if(lv1>lv2&&rv1>rv2)return p->ins(b,k,id),void();
int mid=(l+r)>>1;
double x=(b-p->b)/(p->k-k);
if(lv1<=lv2){
if(x<=mid)bb=p->b,kk=p->k,ii=p->id,p->ins(b,k,id),update(p->lc,l,mid,bb,kk,ii);
else update(p->rc,mid+1,r,b,k,id);
}else{
if(x<=mid)update(p->lc,l,mid,b,k,id);
else bb=p->b,kk=p->k,ii=p->id,p->ins(b,k,id),update(p->rc,mid+1,r,bb,kk,ii);
}
return;
}
int mid=(l+r)>>1;
if(ql<=mid)update(p->lc,l,mid,b,k,id);
if(qr>mid)update(p->rc,mid+1,r,b,k,id);
}
void query(node *p,int l,int r){
if(cmax(mx,p->calc(x)))res=p->id;
if(l==r)return;
int mid=(l+r)>>1;
x<=mid?query(p->lc,l,mid):query(p->rc,mid+1,r);
}
int cnt,op,val[N],ID[N];
int main(){
q=read(),n=39989;
build(rt,1,n);
while(q--){
op=read();
if(op==1){
int x0=(read()+res-1)%n+1,y0=(read()+res-1)%L+1;
int x1=(read()+res-1)%n+1,y1=(read()+res-1)%L+1;
++cnt;
if(x0==x1&&cmax(val[x0],max(y0,y1))){ID[x0]=cnt;continue;}
if(x0>x1)swap(x0,x1),swap(y0,y1);
k=1.0*(y1-y0)/(x1-x0),b=y0-k*x0,id=cnt,ql=x0,qr=x1;
update(rt,1,n,b,k,id);
}else{
x=(read()+res-1)%n+1,mx=res=0;
query(rt,1,n);
cmax(mx,1.0*val[x])?res=ID[x]:0;
print(res);
}
}
return Ot(),0;
}

洛谷P4097 [HEOI2013]Segment(李超线段树)的更多相关文章

  1. 【洛谷P4097】Segment 李超线段树

    题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...

  2. Luogu P4097 [HEOI2013]Segment 李超线段树

    题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...

  3. P4097 [HEOI2013]Segment 李超线段树

    $ \color{#0066ff}{ 题目描述 }$ 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 给定一个数 k,询问与直线 x = k 相交的线 ...

  4. 2018.07.23 洛谷P4097 [HEOI2013]Segment(李超线段树)

    传送门 给出一个二维平面,给出若干根线段,求出x" role="presentation" style="position: relative;"&g ...

  5. 洛谷 P4097 [HEOI2013]Segment 解题报告

    P4097 [HEOI2013]Segment 题目描述 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 给定一个数 \(k\),询问 ...

  6. 洛谷P4069 [SDOI2016]游戏(李超线段树)

    题意 题目链接 Sol 这题细节好多啊qwq..稍不留神写出一个小bug就要调1h+.. 思路就不多说了,把询问区间拆成两段就是李超线段树板子题了. 关于dis的问题可以直接维护. // luogu- ...

  7. BZOJ3165: [Heoi2013]Segment(李超线段树)

    题意 题目链接 Sol 李超线段树板子题.具体原理就不讲了. 一开始自己yy着写差点写自闭都快把叉积搬出来了... 后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz #include& ...

  8. 【BZOJ 3165】 [Heoi2013]Segment 李超线段树

    所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...

  9. [洛谷P4097] [HEOI2013] Segment

    Description 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第 \(i\) 条被插入的线段的标号为 \(i\) 2.给定一个数 \(k\) ,询问与直线 \(x = k\ ...

随机推荐

  1. 基于NodeJS的14款Web框架

    摘要: 在几年的时间里,Node.js逐渐发展成一个成熟的开发平台,吸引了许多开发者.有许多大型高流量网站都采用Node.js进行开发,像PayPal, 此外,开发人员还可以使用它来开发一些快速移动W ...

  2. Apache Hive (三)Hive元数据信息对应MySQL数据库表

    转自:https://www.cnblogs.com/qingyunzong/p/8710356.html 概述 Hive 的元数据信息通常存储在关系型数据库中,常用MySQL数据库作为元数据库管理. ...

  3. 理解python中的元类

    一,理解类也是对象 在python中类同样也是一种对象,只要使用关键字class,Python解释器在执行的时候就会创建一个对象,这个对象(类)自身拥有创建对象(类实例)的能力,这就是为什么他是一个类 ...

  4. 我的MBTI性格测试

    写在前面: 很多人争论MBTI靠谱不靠谱.一个人的性格肯定不能只用这么几个维度就能描述的,一个人的性格也肯定不是通过这么几个问题就能测出来的,一个人的性格也肯定不是一成不变的,所以MBTI的准确度肯定 ...

  5. catkin_make与gtest出现冲突的问题与解决

    gtest是测试时调用的,把测试禁止掉试试 catkin_make --pkg pkgname -DCATKIN_ENABLE_TESTING=0

  6. [GO]结构体的值传递和地址传递

    package main import "fmt" type student struct { id int name string sex byte age int addr s ...

  7. https hsts 私密链接

    chrome强制转跳https,删除对某个域名的强制转跳即可 hrome的地址栏输入:chrome://net-internals/#hsts   在Delete domain下输入相对应的网址,不带 ...

  8. 解决gitosis中authorized_keys不自动更新问题

    1.拷贝一个管理员权限用户的id_rsa.pub到服务器端 这里我拷贝的是yang电脑的key,命令如下: scp  /home/yang/.ssh/id_rsa.pub serveradmin@服务 ...

  9. 移动端H5页面如何屏蔽双击缩放的功能?(转)

    来自大佬的回答: 我在我们的页面中加了很多,除了ios10以上的safari不兼容以外还没有遇到过不兼容的情况. <!-- 视图窗口,移动端特属的标签. --> <meta name ...

  10. HDU 3366 Passage (概率DP)

    题意:T组测试数据,一个人困在了城堡中,有n个通道,m百万money ,每个通道能直接逃出去的概率为 P[i] ,遇到士兵的概率为 q[i], 遇到士兵得给1百万money,否则会被杀掉,还有 1-p ...