题目传送门

上帝与集合的正确用法

题目描述

根据一些书上的记载,上帝的一次失败的创世经历是这样的:

第一天, 上帝创造了一个世界的基本元素,称做“元”。

第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。

第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。

第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。

如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。

然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……

然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。

至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?

上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。

你可以认为上帝从“α”到“θ”一共创造了 10^9 次元素,或 10^18 次,或者干脆∞次。

一句话题意:

$2^{2^{2^{...}}} \mod p$

输入输出格式

输入格式:

第一行一个整数 T ,表示数据个数。

接下来 T 行,每行一个正整数 p ,代表你需要取模的值

输出格式:

T 行,每行一个正整数,为答案对 p 取模后的值

输入输出样例

输入样例#1:

3
2
3
6
输出样例#1:

0
1
4

说明

对于100%的数据, $T\leq 1000 , p\leq 10^7$


  分析:

  一道扩展欧拉定理的题,实际上也比较接近于裸题了。但是有些细节要注意,而且有点卡常,另外空间有点小,一开始队列开大了然后MLE。。。。(好吧实际上是因为我用了线性筛,直接暴力求欧拉函数还会快些。。。)

  Code:

#include<bits/stdc++.h>
using namespace std;
const int N=1e7+;
int T,n,phi[N],q[100];
bool vis[N];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''&&ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
void ready()
{
int top=,k;phi[]=;
for(int i=;i<N;i++){
if(!vis[i])phi[q[++top]=i]=i-;
for(int j=;j<=top&&(k=i*q[j])<N;j++){
vis[k]=true;
if(i%q[j])
phi[k]=phi[i]*(q[j]-);
else {
phi[k]=phi[i]*q[j];break;}
}
}
}
inline int mul(int x,int y,int mod)
{
int ret=;
while(y){
if(y&)ret=(ret+x)%mod;
y>>=;x=(x+x)%mod;}
return ret;
}
inline int power(int x,int y,int mod)
{
int ret=;
while(y){
if(y&)ret=mul(ret,x,mod)%mod;
y>>=;x=mul(x,x,mod)%mod;}
return ret;
}
inline int dfs(int x)
{
if(x==)return ;
return power(,dfs(phi[x])+phi[x],x);
}
int main()
{
T=read();ready();
while(T--){
n=read();
printf("%d\n",dfs(n));
}
return ;
}

洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  3. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  4. 洛谷P4139 上帝与集合的正确用法 拓欧

    正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...

  5. [洛谷P4139]上帝与集合的正确用法

    题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...

  6. 【bzoj3884】上帝与集合的正确用法 扩展欧拉定理

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  7. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  8. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

  9. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

随机推荐

  1. Java设计模式の责任链模式

    在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其 ...

  2. java面试梳理

    自己整理的有关java面试过的问题,有错的请矫正. 1, Spring的核心思想 控制反转和面向切面的编程 2,Spring的核心模块 反向控制与依赖注入.Bean配置以及加载 3,Scope是什么 ...

  3. HDU 1573 CRT

    CRT模板题 /** @Date : 2017-09-15 13:52:21 * @FileName: HDU 1573 CRT EXGCD.cpp * @Platform: Windows * @A ...

  4. php发送get和post请求

    1. Get方式实现 //初始化 $ch = curl_init(); //设置选项,包括URL curl_setopt($ch, CURLOPT_URL, "http://www.abc. ...

  5. python 版本zabbix_sender

    python版本的zabbix_sender: 使用方法:    1.导入 : from zbx_send import info        2.实例化: test=info()     3.支持 ...

  6. 2017ACM暑期多校联合训练 - Team 5 1006 HDU 5205 Rikka with Graph (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  7. HDU 3790 最短生成树 (最短路)

    题目链接 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. ...

  8. CRF原理解读

    概率有向图又称为贝叶斯网络,概率无向图又称为马尔科夫网络.具体地,他们的核心差异表现在如何求  ,即怎么表示  这个的联合概率. 概率图模型的优点: 提供了一个简单的方式将概率模型的结构可视化. 通过 ...

  9. Mysql中的primary key 与auto_increment

    mysql> create table cc(id int auto_increment); ERROR (): Incorrect table definition; there can be ...

  10. python基础===拆分字符串,和拼接字符串

    给定某字符,只需要保留其中的有效汉字或者字母,数字之类的.去掉特殊符号或者以某种格式进行拆分的时候,就可以采用re.split的方法.例如 ============================== ...