Spectral clustering谱聚类
Basic knowledge:
degree matrix; similarity matrix, and Adjacency matrix;
无向带权图模型 G=<V,E>G=<V,E>,每一条边上的权重wij为两个顶点的相似度,从而可以定义相似度矩阵W,此外还可以定义度矩阵D和邻接矩阵A,从而有拉普拉斯矩阵 L=D−A;
距离度量与邻接矩阵
邻接矩阵某种程度上反映了图中各结点之间的相似性,普通的邻接矩阵元素非0即1,谱聚类中的邻接矩阵用KNN来计算。具体来说,遍历每一个结点xi,根据相似度(或距离)矩阵找出它的kk个最接近的点,构成xixi的邻域NiNi,然后按以下规则之一构造邻接矩阵。
Methodology:
1. similarity matrix S; 通过样本点距离度量的相似矩阵S来获得邻接矩阵W.
构建邻接矩阵WW的方法有三类。ϵϵ-邻近法,K邻近法和全连接法。
2. Laplacians matrix,
拉普拉斯矩阵L=D−W
输入:样本集D=(x1,x2,...,xn)(x1,x2,...,xn),相似矩阵的生成方式, 降维后的维度k1k1, 聚类方法,聚类后的维度k2k2
输出: 簇划分C(c1,c2,...ck2)C(c1,c2,...ck2).
1) 根据输入的相似矩阵的生成方式构建样本的相似矩阵S
2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D
3)计算出拉普拉斯矩阵L
4)构建标准化后的拉普拉斯矩阵D−1/2LD−1/2D−1/2LD−1/2
5)计算D−1/2LD−1/2D−1/2LD−1/2最小的k1k1个特征值所各自对应的特征向量ff
6) 将各自对应的特征向量ff组成的矩阵按行标准化,最终组成n×k1n×k1维的特征矩阵F
7)对F中的每一行作为一个k1k1维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为k2k2。
8)得到簇划分C(c1,c2,...ck2)C(c1,c2,...ck2).
谱聚类算法的主要优点有:
1)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到
2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。
谱聚类算法的主要缺点有:
1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。
2) 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。
Spectral clustering谱聚类的更多相关文章
- 转:浅谈Spectral Clustering 谱聚类
浅谈Spectral Clustering Spectral Clustering,中文通常称为“谱聚类”.由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法. Spectral Cluste ...
- 谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
- 【聚类算法】谱聚类(Spectral Clustering)
目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图 ...
- 谱聚类(Spectral Clustering)详解
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似 ...
- 谱聚类 Spectral Clustering
转自:http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297426.html 如果说 K-means 和 GMM 这些聚类的方法是古代流行的算 ...
- 基于谱聚类的三维网格分割算法(Spectral Clustering)
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相 ...
- 谱聚类算法(Spectral Clustering)优化与扩展
谱聚类(Spectral Clustering, SC)在前面的博文中已经详述,是一种基于图论的聚类方法,简单形象且理论基础充分,在社交网络中广泛应用.本文将讲述进一步扩展其应用场景:首先是User- ...
- 谱聚类算法(Spectral Clustering)
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法--将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的 ...
- 谱聚类(Spectral clustering)分析(1)
作者:桂. 时间:2017-04-13 19:14:48 链接:http://www.cnblogs.com/xingshansi/p/6702174.html 声明:本文大部分内容来自:刘建平Pi ...
随机推荐
- 分库分表技术演进&最佳实践
每个优秀的程序员和架构师都应该掌握分库分表,这是我的观点. 移动互联网时代,海量的用户每天产生海量的数量,比如: 用户表 订单表 交易流水表 以支付宝用户为例,8亿:微信用户更是10亿.订单表更夸张, ...
- 洛谷题解 P1134 【阶乘问题】
原题传送门 题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12!=1×2×3×4×5×6×7×8×9×10×11×12=479,001,600 12的阶乘最右边的非零位为6. ...
- mysql查询中字符串转换成数字
在操作mysql时,经常需要将字符转换成数字,这一步虽然简单,但不常用的话也很容易忘记,现将在网上找到的方法记录如下: 1.将字符的数字转成数字,比如'0'转成0可以直接用加法来实现例如:将pony表 ...
- C#最基本的Socket编程
示例程序是同步套接字程序,功能很简单,只是客户端发给服务器一条信息,服务器向客户端返回一条信息,是一个简单示例,也是一个最基本的socket编程流程. 简单步骤说明: 1.用指定的port, ip 建 ...
- VSCode添加git bash作为默认终端
VSC添加git bash作为默认终端的settings.json添加 { "terminal.integrated.shell.windows": "D:\\Progr ...
- Postman使用技巧
Postman是什么 Postman是chrome的一款插件,用于做接口请求测试,无论是前端,后台还是测试人员,都可以用postman来测试接口,用起来非常方便. Postman安装 官网下载(翻墙) ...
- python multiprocessing 耗内存问题
multiprocessing在每创建一个进程时,会将主进程的内存空间原封不动的复制一份到子进程,这样一来内存消耗很容易就翻几倍,导致程序无法运行. 究其原因,是启动进程时采用了os.fork(),使 ...
- 数据库中的sql语句总结
初识SQL 1. 什么是SQL:结构化查询语言(Structured Query Language). 2. SQL的作用:客户端使用SQL来操作服务器. > 启动mysql.exe,连 ...
- matlab HW求法笔记
for i=1:9400 Sbox_out_11(i) = length(findstr(num2str(dec2bin(Sbox_out_1(i,:))),'1')); end
- 摇一摇—微信7.0.8版本audio无法自动播放问题
近日有一个项目出现audio无法自动播放,查看原因才发现是微信版本更新为7.0.8版本,需要有交互行为,第一次播放需要用户手动点击一下,无法使用DOM中的play()进行直接播放操作,那怎么办呢? 通 ...