dp-完全背包(题)
理解了这道题 , 我感觉对背包又有了一个更深的认识 ……
HDU 2159
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std ; #define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a int obtain[105] , reduce[105] ;
int dp[105][105] ; int main ( ) {
int n , m , K , s ;
int a , b , i , j , k ; while ( cin >> n >> m >> K >> s ) {
for ( i = 1 ; i <= K ; i++ ) {
cin >> obtain[i] >> reduce[i] ;
} int sign = 1 ;
memset ( dp , 0 , sizeof(dp) ) ;
for ( i = 1 ; i <= m ; i++ ) {
for ( j = 1 ; j <= K ; j++ ) {
for ( k = 1 ; k <= s ; k++ ) {
if ( reduce[j] <= i )
dp[i][k] = Max ( dp[i][k] , dp[i-reduce[j]][k-1]+obtain[j] ) ;
}
}
if ( dp[i][s] >= n ) {
cout << m-i << endl ;
sign = 0 ;
break ;
}
}
if ( sign ) cout << -1 << endl ;
} return 0 ;
}
dp-完全背包(题)的更多相关文章
- 【DP_树形DP专题】题单总结
转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...
- CodeForces 543A - Writing Code DP 完全背包
有n个程序,这n个程序运作产生m行代码,但是每个程序产生的BUG总和不能超过b, 给出每个程序产生的代码,每行会产生ai个BUG,问在总BUG不超过b的情况下, 我们有几种选择方法思路:看懂了题意之后 ...
- dp之背包总结篇
//新手DP学习中 = =!! 前言:背包问题在dp中可以说是经典,作为一个acmer,到现在才正式学习dp,可以说是比较失败的.我个人比较认同一点,想要做一个比较成功的acmer,dp.搜索.数学必 ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- HDOJ(HDU).2602 Bone Collector (DP 01背包)
HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...
- UVA.357 Let Me Count The Ways (DP 完全背包)
UVA.357 Let Me Count The Ways (DP 完全背包) 题意分析 与UVA.UVA.674 Coin Change是一模一样的题.需要注意的是,此题的数据量较大,dp数组需要使 ...
- UVA.10130 SuperSale (DP 01背包)
UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个. ...
- NOI 2015 寿司晚宴 (状压DP+分组背包)
题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取.两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数 (数据范 ...
- DP之背包经典三例
0/1背包 HDU2602 01背包(ZeroOnePack): 有N件物品和一个容量为V的背包,每种物品均只有一件.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使价值总和最大 ...
- USACO Money Systems Dp 01背包
一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...
随机推荐
- java多异常处理
声明异常时尽可能声明具体异常类型,方便更好的处理; 方法声明几个异常就对应有几个catch块; 若多个catch块中的异常出现继承关系,父类异常catch块放在最后; 在catch语句块使用Excep ...
- CentOS7 添加FTP用户并设置权限
step 1 安装配置Vsftp服务器 一.配置防火墙,开启FTP服务器需要的端口 CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewal ...
- UVA 11212 Editing a Book [迭代加深搜索IDA*]
11212 Editing a Book You have n equal-length paragraphs numbered 1 to n. Now you want to arrange the ...
- UVA 247"Calling Circles"(floyd求传递闭包+SCC)
传送门 题意: 如果两个人相互打电话(直接或间接),则说他们在同一个电话圈里. (a,b) 表示 a 打给 b: 例如,(a,b),(b,c),(c,d),(d,a),则这四个人在同一个电话圈里: 输 ...
- P1000 A+B Problem
题目描述 给定两个整数\(a,b\),输出它们的和. 输入格式 输入两个整数,表示\(a,b(1 \le a,b \le 10^9)\). 输出格式 输出一个整数,表示答案. 样例输入 20 30 样 ...
- P1029 栈的基础操作
题目描述 现在给你一个栈,它一开始是空的,你需要模拟栈的操作.栈的操作包括如下: "push x":将元素 x 放入栈中,其中x是一个int范围内的整数: "pop&qu ...
- linux ioctl 方法
ioctl, 我们在第 1 章展示给你如何使用, 是一个系统调用, 作用于一个文件描述符; 它 接收一个确定要进行的命令的数字和(可选地)另一个参数, 常常是一个指针. 作为一个使 用 /proc 文 ...
- 【Bad Blood】翻译0
(一)作者注 本书基于对超过150人以上的上百个采访,包括60多个Theranos的职工而著成.叙述中出现的人物大多数都是他们的真实姓名,也有些人希望我隐藏身份信息,他们有些害怕公司的惩罚,有些担心会 ...
- Error与Exception的区别,Java常见异常Execption总结
错误和异常的区别(Error vs Exception) 错误和异常的区别(Error vs Exception) 今天面试问了这样一个问题,"Error" 和 "Exc ...
- Python3装饰器的使用
装饰器 简易装饰器模板 def wrapper(func): def inner(*args,**kwargs): print('主代码前添加的功能') ret=func(*args,**kwargs ...