关键词:tensorflow2、LSTM、时间序列、股票预测

Tensorflow 2.0发布已经有一段时间了,各种新API的确简单易用,除了官方文档以外能够找到的学习资料也很多,但是大都没有给出实战的部分找了好多量化分析中的博客和代码,发现在tensorflow方面大家都还是在用1.x的版本,始终没有找到关于2.x的代码,于是自己写了一段,与大家共勉。

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
# from tensorflow.keras import layers
from sklearn.preprocessing import MinMaxScaler # Part 1 - Data Preprocessing
# Importing the libraries
dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv')
training_set = dataset_train.iloc[:, 1:2].values
# print(dataset_train.head())
# Feature Scaling
sc = MinMaxScaler(feature_range=(0, 1))
training_set_scaled = sc.fit_transform(training_set)
# Creating a data structure with 60 timesteps and 1 output
X_train = []
y_train = []
for i in range(60, 2035):
X_train.append(training_set_scaled[i - 60:i, 0])
y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
# Reshaping
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # Part 2 - Building the RNN
# Initialising the RNN
regressor = tf.keras.Sequential()
# Adding the first LSTM layer and some Dropout regularisation
regressor.add(tf.keras.layers.LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
regressor.add(tf.keras.layers.Dropout(0.2))
# Adding a second LSTM layer and some Dropout regularisation
regressor.add(tf.keras.layers.LSTM(units=50, return_sequences=True))
regressor.add(tf.keras.layers.Dropout(0.2))
# Adding a third LSTM layer and some Dropout regularisation
regressor.add(tf.keras.layers.LSTM(units=50, return_sequences=True))
regressor.add(tf.keras.layers.Dropout(0.2))
# Adding a fourth LSTM layer and some Dropout regularisation
regressor.add(tf.keras.layers.LSTM(units=50))
regressor.add(tf.keras.layers.Dropout(0.2))
# Adding the output layer
regressor.add(tf.keras.layers.Dense(units=1))
# Compiling the RNN
regressor.compile(optimizer='adam', loss='mean_squared_error')
# Fitting the RNN to the Training set
regressor.fit(X_train, y_train, epochs=100, batch_size=32) # Part 3 - Making the predictions and visualising the results
# Getting the real stock price of 2017
dataset_test = pd.read_csv('tatatest.csv')
real_stock_price = dataset_test.iloc[:, 1:2].values # Getting the predicted stock price of 2017
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis=0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
inputs = inputs.reshape(-1, 1)
inputs = sc.transform(inputs)
X_test = []
for i in range(60, 76):
X_test.append(inputs[i - 60:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price) # Visualising the results
plt.plot(real_stock_price, color='red', label='Real TATA Stock Price')
plt.plot(predicted_stock_price, color='blue', label='Predicted TAT Stock Price')
plt.title('TATA Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('TATA Stock Price')
plt.legend()
plt.show()

项目比较demo,但是凭借这个基本可以达到一个框架,另外我在其他随笔中也有相关的学习,欢迎大家讨论学习

使用的tata数据集是非常的难找(看了好多有代码没数据集索引),哭了,真的找了好久。

请移步https://www.cnblogs.com/xingnie/p/12219474.html

盘它!!一步到位,Tensorflow 2的实战 !!LSTM下的股票预测(附详尽代码及数据集)的更多相关文章

  1. 异常值检验实战1--风控贷款年龄变量(附python代码)

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  2. 使用tensorflow的lstm网络进行时间序列预测

    https://blog.csdn.net/flying_sfeng/article/details/78852816 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...

  3. 第24月第30天 scrapy《TensorFlow机器学习项目实战》项目记录

    1.Scrapy https://www.imooc.com/learn/1017 https://github.com/pythonsite/spider/tree/master/jobboleSp ...

  4. tensorflow笔记:多层LSTM代码分析

    tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...

  5. Tensorflow实例:利用LSTM预测股票每日最高价(一)

    RNN与LSTM 这一部分主要涉及循环神经网络的理论,讲的可能会比较简略. 什么是RNN RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的.在传统的神 ...

  6. 使用TensorFlow的递归神经网络(LSTM)进行序列预测

    本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测.作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的. 所以呢,这里是基于历史观察数 ...

  7. Tensorflow 循环神经网络 基本 RNN 和 LSTM 网络 拟合、预测sin曲线

    时序预测一直是比较重要的研究问题,在统计学中我们有各种的模型来解决时间序列问题,但是最近几年比较火的深度学习中也有能解决时序预测问题的方法,另外在深度学习领域中时序预测算法可以解决自然语言问题等. 在 ...

  8. 深度学习RNN实现股票预测实战(附数据、代码)

    背景知识 最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work.于是就花了两个晚上的时间学习了下代码,顺便把 ...

  9. [转载]实战Linux下VMware虚拟机根目录空间扩充

    [转载]实战Linux下VMware虚拟机根目录空间扩充 (2011-07-31 21:34:34) 转载▼ 标签: 转载   原文地址:实战Linux下VMware虚拟机根目录空间扩充作者:shar ...

随机推荐

  1. ZOJ 1276 "Optimal Array Multiplication Sequence"(最优矩阵链乘问题+区间DP)

    传送门 •题意 矩阵 A(n×m) 和矩阵 B(m×k) 相乘,共做 n×m×k 次乘法运算: 给你 n 个矩阵,求这 n 个矩阵的最优结合方式,使得做的总乘法运算次数最少: •题解 定义dp(i,j ...

  2. HDU 1698 Just a Hook (线段树模板题-区间求和)

    Just a Hook In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of t ...

  3. vue 弹窗时 监听手机返回键关闭弹窗(页面不跳转)

    [注]:  popstate 事件 a.当活动历史记录条目更改时,将触发popstate事件. b.如果被激活的历史记录条目是通过对history.pushState()的调用创建的,或者受到对his ...

  4. 不幸的是,我试图在Eclipse中安装Maven 1.5,但出现了以下错误:

    Cannot complete the install because one or more required items could not be found. Software being in ...

  5. 2019-11-19-C#-高级面试题

    title author date CreateTime categories C# 高级面试题 lindexi 2019-11-19 08:40:50 +0800 2018-11-12 11:18: ...

  6. H3C查看系统启动配置文件

  7. Linux 内核 嵌入的 kobjects

    在我们进入细节前, 值得花些时间理解如何使用 kobjects. 如果你回看被 kobjects 处 理的函数列表, 你会看到它们都是代表其他对象进行的服务. 一个 kobject, 换句话说, 对其 ...

  8. APK签名替换检测

    APK二次打包的危害 APK二次打包是Android应用安全风险中的一部分, 一般是通过反编译工具向应用中插入广告代码与相关配置,再在第三方应用市场.论坛发布.打包党对移动App带来的危害有以下几种: ...

  9. dotnet 使用 Environment.FailFast 结束程序

    在运行到一些诡异的代码,这时的程序已经无法继续运行,需要退出,那么如何在记完日志之后在退出程序记录更多信息?可以通过 Environment.FailFast 里面添加字符串告诉用户当前的进程无法继续 ...

  10. sed工具

    SED是一个非交互式文本编辑器,它可对文本文件和标准输入进行编辑,标准输入可以来自键盘输入.文本重定向.字符串.变量,甚至来自于管道的文本,与VIM编辑器类似,它一次处理一行内容,Sed可以编辑一个或 ...