P1919 【模板】A*B Problem升级版 /// FFT模板
题目大意:
给定l,输入两个位数为l的数A B
输出两者的乘积
FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的
struct cpx {
double x,y;
cpx(double _x=0.0,double _y=0.0) {
x=_x; y=_y;
}
cpx operator -(const cpx &b) const {
return cpx(x-b.x,y-b.y);
}
cpx operator +(const cpx &b) const {
return cpx(x+b.x,y+b.y);
}
cpx operator *(const cpx &b) const {
return cpx(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
void change(cpx a[],int len) /// 位置互换 len必须是2的幂
{
for(int i=,j=len/;i<len-;i++) {
if(i<j) swap(a[i],a[j]);
int k=len/;
while(j>=k) j-=k, k>>=;
if(j<k) j+=k;
}
}
#define PI acos(-1)
void fft(cpx a[],int len,int on)/// len必须是2的幂 on为1时dft -1时idft
{
change(a,len);
for(int i=;i<len;i <<= ) {
cpx wn(cos(PI/i),on*sin(PI/i));
for(int j=;j<len;j+=(i<<)) {
cpx w(,);
for(int k=;k<i;k++,w=w*wn) {
cpx u=a[j+k], v=w*a[j+k+i];
a[j+k]=u+v, a[j+k+i]=u-v;
}
}
}
if(on==-) {
for(int i=;i<len;i++)
a[i].x/=len;
}
}
FFT模板1
struct cpx {
double x,y;
cpx(double _x=0.0,double _y=0.0) {
x=_x; y=_y;
}
cpx operator - (const cpx &b)const {
return cpx(x-b.x,y-b.y);
}
cpx operator + (const cpx &b)const {
return cpx(x+b.x,y+b.y);
}
cpx operator * (const cpx &b)const {
return cpx(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
void fft(cpx a[],int on)
{
for(int i=;i<len;i++)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int i=;i<len;i<<=) {
cpx wn(cos(PI/i),on*sin(PI/i));
for(int j=;j<len;j+=(i<<)) {
cpx w(,);
for(int k=;k<i;k++,w=w*wn) {
cpx u=a[j+k], v=w*a[j+k+i];
a[j+k]=u+v, a[j+k+i]=u-v;
}
}
}
}
int main()
{
......
while(len<d*) len <<= , l++; // 将长度补到2的幂
for(int i=;i<len;i++)
r[i]=( r[i>>]>> )|( (i&)<<(l-) );
......
}
FFT模板2
这题是把两个数看成
A=a1*10^0+a2*10^1+a3*10^2...+al*10^(l-1)
B=b1*10^0+b2*10^1+b3*10^2...+bl*10^(l-1)
的形式
这样就变成了多项式相乘
#include <bits/stdc++.h>
#define PI acos(-1)
#define MAXN 300004
using namespace std; struct cpx{
double x,y;
cpx(double _x=0.0,double _y=0.0) {
x=_x; y=_y;
}
cpx operator-(const cpx &b)const {
return cpx(x-b.x,y-b.y);
}
cpx operator+(const cpx &b)const {
return cpx(x+b.x,y+b.y);
}
cpx operator*(const cpx &b)const {
return cpx(x*b.x-y*b.y,x*b.y+y*b.x);
}
}x1[MAXN/], x2[MAXN/]; char str1[MAXN/], str2[MAXN/];
int sum[MAXN], l; void change(cpx a[],int len) /// 位置互换 len必须是2的幂
{
for(int i=,j=len/;i<len-;i++) {
if(i<j) swap(a[i],a[j]);
int k=len/;
while(j>=k) {
j-=k, k >>= ;
}
if(j<k) j+=k;
}
} void fft(cpx a[],int len,int on)/// len必须是2的幂 on为1时dft -1时idft
{
change(a,len);
for(int i=;i<len;i <<= ) {
cpx wn(cos(PI/i),on*sin(PI/i));
for(int j=;j<len;j+=(i<<)) {
cpx w(,);
for(int k=;k<i;k++,w=w*wn) {
cpx u=a[j+k], t=w*a[j+k+i];
a[j+k]=u+t, a[j+k+i]=u-t;
}
}
}
if(on==-) {
for(int i=;i<len;i++)
a[i].x/=len;
}
} int main()
{
while(~scanf("%d",&l)) {
scanf("%s%s",str1,str2);
int len=;
while(len<l*) len <<= ; // 将长度补到2的幂
for(int i=;i<l;i++)
x1[i]=cpx(str1[l--i]-'',),
x2[i]=cpx(str2[l--i]-'',);
for(int i=l;i<len;i++)
x1[i]=x2[i]=cpx(,); // 不足补0 fft(x1,len,); fft(x2,len,); /// dft转为点值表达
for(int i=;i<len;i++) x1[i]=x1[i]*x2[i]; // 计算
fft(x1,len,-); /// idft转为系数表达 for(int i=;i<len;i++)
sum[i]=(int)(x1[i].x+0.1); // 四舍五入
for(int i=;i<len;i++)
sum[i+]+=sum[i]/, sum[i]%=; // 进制
while(sum[len]== && len>) len--; // 去前导0
for(int i=len;i>=;i--)
printf("%d",sum[i]); printf("\n");
} return ;
}
两种模板的细节区别在于
(2)在四舍五入时除len ,而(1)是在FFT中判断开关on再除len
#include <bits/stdc++.h>
#define PI acos(-1.0)
const int MAXN=;
using namespace std; struct cpx {
double x,y;
cpx(double _x=0.0,double _y=0.0) {
x=_x; y=_y;
}
cpx operator - (const cpx &b)const {
return cpx(x-b.x,y-b.y);
}
cpx operator + (const cpx &b)const {
return cpx(x+b.x,y+b.y);
}
cpx operator * (const cpx &b)const {
return cpx(x*b.x-y*b.y,x*b.y+y*b.x);
}
}x1[MAXN], x2[MAXN]; int n, m, len=;
int l, r[MAXN], sum[MAXN];
char str1[MAXN],str2[MAXN]; void fft(cpx a[],int on)
{
for(int i=;i<len;i++)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int i=;i<len;i<<=) {
cpx wn(cos(PI/i),on*sin(PI/i));
for(int j=;j<len;j+=(i<<)) {
cpx w(,);
for(int k=;k<i;k++,w=w*wn) {
cpx u=a[j+k], v=w*a[j+k+i];
a[j+k]=u+v, a[j+k+i]=u-v;
}
}
}
} int main()
{
int d;
while(~scanf("%d",&d)) {
scanf("%s%s",str1,str2);
while(len<d*) len <<= , l++; // 将长度补到2的幂
for(int i=;i<d;i++)
x1[i]=cpx(str1[d--i]-'',),
x2[i]=cpx(str2[d--i]-'',);
for(int i=;i<len;i++)
r[i]=( r[i>>]>> )|( (i&)<<(l-) ); fft(x1,); fft(x2,); /// dft转为点值表达
for(int i=;i<len;i++) x1[i]=x1[i]*x2[i]; // 计算
fft(x1,-); /// idft转为系数表达 for(int i=;i<len;i++)
sum[i]=(int)(x1[i].x/len+0.1); // 四舍五入
for(int i=;i<len;i++)
sum[i+]+=sum[i]/, sum[i]%=; // 进制
while(sum[len]== && len>) len--; // 去前导0
for(int i=len;i>=;i--)
printf("%d",sum[i]); printf("\n");
} return ;
}
P1919 【模板】A*B Problem升级版 /// FFT模板的更多相关文章
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- HDU 1402 A * B Problem Plus (FFT模板题)
FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...
- [hdu1402]A * B Problem Plus(FFT模板题)
解题关键:快速傅里叶变换fft练习. 关于结果多项式长度的确定,首先将短多项式扩展为长多项式,然后扩展为两倍. #include<cstdio> #include<cstring&g ...
- 【洛谷P1919】A*B Problem升级版
题目大意:rt 题解:将长度为 N 的大整数看作是一个 N-1 次的多项式,利用 FFT 计算多项式的卷积即可. 代码如下 #include <bits/stdc++.h> using n ...
- 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...
- 再写FFT模板
没什么好说的,今天又考了FFT(虽然不用FFT也能过)但是确实有忘了怎么写FFT了,于是乎只有重新写一遍FFT模板练一下手了.第一部分普通FFT,第二部分数论FFT,记一下模数2^23*7*17+1 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 2018.08.28 洛谷P3803 【模板】多项式乘法(FFT)
传送门 fft模板题. 终于学会fft了. 这个方法真是神奇! 经过试验发现手写的complex快得多啊! 代码: #include<iostream> #include<cstdi ...
随机推荐
- javascript中内置函数
一.基本函数库 split():用于把一个字符串分割成字符串数组 toUpperCase(): substr(): 长度 length() 拼接(两种) + concat():合并多个字符串,并返回合 ...
- Java中JNI的使用详解第六篇:C/C++中的引用类型和Id的缓存
首先来看一下C/C++中的引用 从Java虚拟机创建的对象传到本地C/C++代码时会产生引用,根据Java的垃圾回收机制,只要有引用存在就不会触发该引用指向的Java对象的垃圾回收 第一.局部引用: ...
- 暑假集训test-8-31(am)
1.字符串匹配 看到题目以为真是字符串题结果是数学题..70分做法很傻逼然而我更傻逼只有30... 正解是发现两个位置会匹配当且仅当mod gcd(lena,lenb)同余,在一个lcm(lena,l ...
- NX二次开发-获取坐标系信息UF_CSYS_ask_csys_info
NX9+VS2012 #include <uf.h> #include <uf_csys.h> UF_initialize(); //获取WCS标识 tag_t WcsId = ...
- NX二次开发-char*转换成CString,多字节转换成Unicode使用方法
//定义一个结构体记录 struct group { CString text; //定义一个CString std::vector<tag_t> boudaries; std::vect ...
- hdu多校第八场 1010(hdu6666) Quailty and CCPC 排序/签到
题意: CCPC前10%能得金牌,给定队伍解题数和罚时,问你有没有一个队伍如果向上取整就金了,四舍五入就银了. 题解: 排序后按题意求解即可. #include<iostream> #in ...
- xslt数值的函数与xslt字符串函数
以下是xslt数值的函数与xslt字符串函数的说明与参考示例. 1.xslt数值的函数:(1)fn:number(arg) 返回参数的数值.参数可以是布尔值.字符串或节点集. 示例:<xsl:v ...
- idea 启动异常xxxx.local: nodename nor servname provided, or not known
在host文件里面新增配置: 127.0.0.1 xxxx.local localhost 原文地址:https://www.jianshu.com/p/12e01fa9c69c
- 27. USART, Universal synchronous asynchronous receiver transmitter
27.1 USART introduction 通用同步异步接收发射机(USART)对需要NRZ异步串行数据格式行业标准的外部设备,提供了一个灵活的全双工数据交换的方法.USART使用分数波特率生成器 ...
- Redis学习之缓存数据类型
Redis缓存数据类型有5种,分别是String(字符串).List(列表).Hash(哈希).Set(无序,不重复集合).ZSet(sorted set:有序,不重复集合). String(字符串) ...