题目下载【传送门

第1题

简述:对于一组网络数据进行异常检测.

第1步:读取数据文件,使用高斯分布计算 μ 和 σ²:

%  The following command loads the dataset. You should now have the
% variables X, Xval, yval in your environment
load('ex8data1.mat'); % Estimate my and sigma2
[mu sigma2] = estimateGaussian(X);

其中高斯分布计算函数estimateGaussian:

function [mu sigma2] = estimateGaussian(X)

% Useful variables
[m, n] = size(X); % You should return these values correctly
mu = zeros(n, 1);
sigma2 = zeros(n, 1); mu = mean(X);
sigma2 = var(X, 1);
% mu = mu';
% sigma2 = sigma2'; end

第2步:计算概率p(x):

%  Returns the density of the multivariate normal at each data point (row)
% of X
p = multivariateGaussian(X, mu, sigma2);

其中概率计算函数

function p = multivariateGaussian(X, mu, Sigma2)

k = length(mu);

if (size(Sigma2, 2) == 1) || (size(Sigma2, 1) == 1)
Sigma2 = diag(Sigma2);
end X = bsxfun(@minus, X, mu(:)');
p = (2 * pi) ^ (- k / 2) * det(Sigma2) ^ (-0.5) * ...
exp(-0.5 * sum(bsxfun(@times, X * pinv(Sigma2), X), 2)); end

第3步:可视化数据,并绘制概率等高线:

%  Visualize the fit
visualizeFit(X, mu, sigma2);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');

其中visualizeFit函数:

function visualizeFit(X, mu, sigma2)

[X1,X2] = meshgrid(0:.5:35);
Z = multivariateGaussian([X1(:) X2(:)],mu,sigma2);
Z = reshape(Z,size(X1)); plot(X(:, 1), X(:, 2),'bx');
hold on;
% Do not plot if there are infinities
if (sum(isinf(Z)) == 0)
contour(X1, X2, Z, 10.^(-20:3:0)');
end
hold off; end

运行结果:

第4步:使用交叉验证集选出最佳参数 ε:

pval = multivariateGaussian(Xval, mu, sigma2);

[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %e\n', epsilon);
fprintf('Best F1 on Cross Validation Set: %f\n', F1);

其中selectThreshold函数:

function [bestEpsilon bestF1] = selectThreshold(yval, pval)

bestEpsilon = 0;
bestF1 = 0;
F1 = 0; stepsize = (max(pval) - min(pval)) / 1000;
for epsilon = min(pval):stepsize:max(pval)
predictions = pval < epsilon;
tp = sum(predictions .* yval);
prec = tp / sum(predictions);
rec = tp / sum(yval);
F1 = 2 * prec * rec / (prec + rec); if F1 > bestF1
bestF1 = F1;
bestEpsilon = epsilon;
end
end end

运行结果:

第5步:找出异常点,并可视化标记:

%  Find the outliers in the training set and plot the
outliers = find(p < epsilon); % Draw a red circle around those outliers
hold on
plot(X(outliers, 1), X(outliers, 2), 'ro', 'LineWidth', 2, 'MarkerSize', 10);
hold off

运行结果:

第2题

简述:实现电影推荐系统

第1步:读取数据文件(截取较少的数据):

%  Load data
load ('ex8_movies.mat'); % Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies on
% 943 users
%
% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
% rating to movie i % Load pre-trained weights (X, Theta, num_users, num_movies, num_features)
load ('ex8_movieParams.mat'); % Reduce the data set size so that this runs faster
num_users = 4; num_movies = 5; num_features = 3;
X = X(1:num_movies, 1:num_features);
Theta = Theta(1:num_users, 1:num_features);
Y = Y(1:num_movies, 1:num_users);
R = R(1:num_movies, 1:num_users);

第2步:计算代价函数和梯度:

J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
num_features, 1.5);

其中cofiCostFunc函数:

function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
num_features, lambda) % Unfold the U and W matrices from params
X = reshape(params(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(params(num_movies*num_features+1:end), ...
num_users, num_features); % You need to return the following values correctly
J = 0;
X_grad = zeros(size(X));
Theta_grad = zeros(size(Theta)); cost = (X * Theta' - Y) .* R;
J = 1 / 2 * sum(sum(cost .^ 2));
J = J + lambda / 2 * (sum(sum(Theta .^ 2)) + sum(sum(X .^ 2))); X_grad = cost * Theta;
X_grad = X_grad + lambda * X; Theta_grad = X' * cost;
Theta_grad = Theta_grad' + lambda * Theta; grad = [X_grad(:); Theta_grad(:)]; end

第3步:进行梯度检测:

%  Check gradients by running checkNNGradients
checkCostFunction(1.5);

其中checkCostFunction函数:

function checkCostFunction(lambda)

% Set lambda
if ~exist('lambda', 'var') || isempty(lambda)
lambda = 0;
end %% Create small problem
X_t = rand(4, 3);
Theta_t = rand(5, 3); % Zap out most entries
Y = X_t * Theta_t';
Y(rand(size(Y)) > 0.5) = 0;
R = zeros(size(Y));
R(Y ~= 0) = 1; %% Run Gradient Checking
X = randn(size(X_t));
Theta = randn(size(Theta_t));
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = size(Theta_t, 2); numgrad = computeNumericalGradient( ...
@(t) cofiCostFunc(t, Y, R, num_users, num_movies, ...
num_features, lambda), [X(:); Theta(:)]); [cost, grad] = cofiCostFunc([X(:); Theta(:)], Y, R, num_users, ...
num_movies, num_features, lambda); disp([numgrad grad]);
fprintf(['The above two columns you get should be very similar.\n' ...
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']); diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf(['If your cost function implementation is correct, then \n' ...
'the relative difference will be small (less than 1e-9). \n' ...
'\nRelative Difference: %g\n'], diff); end

其中computeNumericalGradient函数:

function numgrad = computeNumericalGradient(J, theta)            

numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
% Set perturbation vector
perturb(p) = e;
loss1 = J(theta - perturb);
loss2 = J(theta + perturb);
% Compute Numerical Gradient
numgrad(p) = (loss2 - loss1) / (2*e);
perturb(p) = 0;
end end

  

第4步:对某一用户进行预测,初始化用户的信息:

movieList = loadMovieList();

%  Initialize my ratings
my_ratings = zeros(1682, 1); my_ratings(1) = 4;
my_ratings(98) = 2;
my_ratings(7) = 3;
my_ratings(12)= 5;
my_ratings(54) = 4;
my_ratings(64)= 5;
my_ratings(66)= 3;
my_ratings(69) = 5;
my_ratings(183) = 4;
my_ratings(226) = 5;
my_ratings(355)= 5;

其中loadMovieList函数:

function movieList = loadMovieList()

%% Read the fixed movieulary list
fid = fopen('movie_ids.txt'); % Store all movies in cell array movie{}
n = 1682; % Total number of movies movieList = cell(n, 1);
for i = 1:n
% Read line
line = fgets(fid);
% Word Index (can ignore since it will be = i)
[idx, movieName] = strtok(line, ' ');
% Actual Word
movieList{i} = strtrim(movieName);
end
fclose(fid); end

第5步:将新用户增加到数据集中:

%  Load data
load('ex8_movies.mat'); % Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by
% 943 users
%
% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
% rating to movie i % Add our own ratings to the data matrix
Y = [my_ratings Y];
R = [(my_ratings ~= 0) R];

第6步:均值归一化:

%  Normalize Ratings
[Ynorm, Ymean] = normalizeRatings(Y, R);

其中normalizeRatings函数:

function [Ynorm, Ymean] = normalizeRatings(Y, R)

[m, n] = size(Y);
Ymean = zeros(m, 1);
Ynorm = zeros(size(Y));
for i = 1:m
idx = find(R(i, :) == 1);
Ymean(i) = mean(Y(i, idx));
Ynorm(i, idx) = Y(i, idx) - Ymean(i);
end end

第7步:实现梯度下降,训练模型:

%  Useful Values
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = 10; % Set Initial Parameters (Theta, X)
X = randn(num_movies, num_features);
Theta = randn(num_users, num_features); initial_parameters = [X(:); Theta(:)]; % Set options for fmincg
options = optimset('GradObj', 'on', 'MaxIter', 100); % Set Regularization
lambda = 10;
theta = fmincg (@(t)(cofiCostFunc(t, Ynorm, R, num_users, num_movies, ...
num_features, lambda)), ...
initial_parameters, options); % Unfold the returned theta back into U and W
X = reshape(theta(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(theta(num_movies*num_features+1:end), ...
num_users, num_features);

第8步:实现推荐功能:

p = X * Theta';
my_predictions = p(:,1) + Ymean; movieList = loadMovieList(); [r, ix] = sort(my_predictions, 'descend');
fprintf('\nTop recommendations for you:\n');
for i=1:10
j = ix(i);
fprintf('Predicting rating %.1f for movie %s\n', my_predictions(j), ...
movieList{j});
end

运行结果:

机器学习作业(八)异常检测与推荐系统——Matlab实现的更多相关文章

  1. 基于机器学习的web异常检测

    基于机器学习的web异常检测 Web防火墙是信息安全的第一道防线.随着网络技术的快速更新,新的黑客技术也层出不穷,为传统规则防火墙带来了挑战.传统web入侵检测技术通过维护规则集对入侵访问进行拦截.一 ...

  2. 基于机器学习的web异常检测——基于HMM的状态序列建模,将原始数据转化为状态机表示,然后求解概率判断异常与否

    基于机器学习的web异常检测 from: https://jaq.alibaba.com/community/art/show?articleid=746 Web防火墙是信息安全的第一道防线.随着网络 ...

  3. 机器学习作业(七)非监督学习——Matlab实现

    题目下载[传送门] 第1题 简述:实现K-means聚类,并应用到图像压缩上. 第1步:实现kMeansInitCentroids函数,初始化聚类中心: function centroids = kM ...

  4. 机器学习作业(二)逻辑回归——Matlab实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 第1步:加载数据文件: data = load('ex2data1.txt'); X = data(:, [1, 2]); y = dat ...

  5. Andrew Ng机器学习课程笔记--week9(上)(异常检测&推荐系统)

    本周内容较多,故分为上下两篇文章. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distrib ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  7. Stanford机器学习---第十一讲.异常检测

    之前一直在看Standford公开课machine learning中Andrew老师的视频讲解https://class.coursera.org/ml/class/index 同时配合csdn知名 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测

    [1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n  测验1 Answ ...

  9. 斯坦福机器学习视频笔记 Week9 异常检测和高斯混合模型 Anomaly Detection

    异常检测,广泛用于欺诈检测(例如“此信用卡被盗?”). 给定大量的数据点,我们有时可能想要找出哪些与平均值有显着差异. 例如,在制造中,我们可能想要检测缺陷或异常. 我们展示了如何使用高斯分布来建模数 ...

随机推荐

  1. python+selenium自动化测试,浏览器最大化报错解决方法

    此处以谷歌浏览器为例 [问题1]缺少chrome驱动,webdriver调用谷歌浏览器的时候就报错了,如下图: [原因分析]缺少谷歌驱动程序 [解决办法] 1.查看本地安装chrome浏览器版本 2. ...

  2. MongoDB集群负载不均衡问题定位及解决

    1.问题描述 这是一套运行在腾讯云上的MongoDB 3.6版本集群,共5个分片,每片规格是6核16GB. 在压测的过程中,发现第3个分片的CPU使用率长时间高达96%,其它4个分片的CPU使用率都没 ...

  3. java数据结构---循环队列

    #java学习经验总结------循环队列的实现(数组) package datastructure;/*数组实现循环队列 队列first in first out*/ public class Ci ...

  4. Foxmail for windows 客户端设置和 IMAP、POP3/SMTP 的设置

    Foxmail支持微信扫码.手机验证码.账号密码三种方式新建腾讯企业邮箱. 注意:目前仅foxmail 7.2.11版本支持微信扫码和手机验证码新建腾讯企业邮箱,可以foxmail官网https:// ...

  5. kong服务网关API

    kong服务网关API pingforever关注 0.1762017.05.23 11:16:08字数 834阅读 7,367 kong简介 Kong 是在客户端和(微)服务间转发API通信的API ...

  6. 鼠标经过INPUT时自动获取焦点

    鼠标经过INPUT时自动获取焦点 <input type="text" name="addr" onMouseOver="this.focus( ...

  7. redis深入学习

    Redis持久化 官方文档: https://redis.io/topics/persistence 1.RDB和AOF优缺点 RDB: 可以在指定的时间间隔内生成数据集的时间点快照,把当前内存里的状 ...

  8. (办公)记事本_linux压缩命令

    参考谷粒学院的linux视频教程:http://www.gulixueyuan.com/course/300/task/7091/show 在Linux中可以识别的常见的压缩格式有十几种,比如&quo ...

  9. PTA Is Topological Order

    Write a program to test if a give sequence Seq is a topological order of a given graph Graph. Format ...

  10. 简单的leetcode题

    简单的leetcode题 环绕字符串中唯一的子字符串 把字符串 s 看作是\("abcdefghijklmnopqrstuvwxyz"\)的无限环绕字符串,所以 s 看起来是这样的 ...