题目下载【传送门

第1题

简述:对于一组网络数据进行异常检测.

第1步:读取数据文件,使用高斯分布计算 μ 和 σ²:

%  The following command loads the dataset. You should now have the
% variables X, Xval, yval in your environment
load('ex8data1.mat'); % Estimate my and sigma2
[mu sigma2] = estimateGaussian(X);

其中高斯分布计算函数estimateGaussian:

function [mu sigma2] = estimateGaussian(X)

% Useful variables
[m, n] = size(X); % You should return these values correctly
mu = zeros(n, 1);
sigma2 = zeros(n, 1); mu = mean(X);
sigma2 = var(X, 1);
% mu = mu';
% sigma2 = sigma2'; end

第2步:计算概率p(x):

%  Returns the density of the multivariate normal at each data point (row)
% of X
p = multivariateGaussian(X, mu, sigma2);

其中概率计算函数

function p = multivariateGaussian(X, mu, Sigma2)

k = length(mu);

if (size(Sigma2, 2) == 1) || (size(Sigma2, 1) == 1)
Sigma2 = diag(Sigma2);
end X = bsxfun(@minus, X, mu(:)');
p = (2 * pi) ^ (- k / 2) * det(Sigma2) ^ (-0.5) * ...
exp(-0.5 * sum(bsxfun(@times, X * pinv(Sigma2), X), 2)); end

第3步:可视化数据,并绘制概率等高线:

%  Visualize the fit
visualizeFit(X, mu, sigma2);
xlabel('Latency (ms)');
ylabel('Throughput (mb/s)');

其中visualizeFit函数:

function visualizeFit(X, mu, sigma2)

[X1,X2] = meshgrid(0:.5:35);
Z = multivariateGaussian([X1(:) X2(:)],mu,sigma2);
Z = reshape(Z,size(X1)); plot(X(:, 1), X(:, 2),'bx');
hold on;
% Do not plot if there are infinities
if (sum(isinf(Z)) == 0)
contour(X1, X2, Z, 10.^(-20:3:0)');
end
hold off; end

运行结果:

第4步:使用交叉验证集选出最佳参数 ε:

pval = multivariateGaussian(Xval, mu, sigma2);

[epsilon F1] = selectThreshold(yval, pval);
fprintf('Best epsilon found using cross-validation: %e\n', epsilon);
fprintf('Best F1 on Cross Validation Set: %f\n', F1);

其中selectThreshold函数:

function [bestEpsilon bestF1] = selectThreshold(yval, pval)

bestEpsilon = 0;
bestF1 = 0;
F1 = 0; stepsize = (max(pval) - min(pval)) / 1000;
for epsilon = min(pval):stepsize:max(pval)
predictions = pval < epsilon;
tp = sum(predictions .* yval);
prec = tp / sum(predictions);
rec = tp / sum(yval);
F1 = 2 * prec * rec / (prec + rec); if F1 > bestF1
bestF1 = F1;
bestEpsilon = epsilon;
end
end end

运行结果:

第5步:找出异常点,并可视化标记:

%  Find the outliers in the training set and plot the
outliers = find(p < epsilon); % Draw a red circle around those outliers
hold on
plot(X(outliers, 1), X(outliers, 2), 'ro', 'LineWidth', 2, 'MarkerSize', 10);
hold off

运行结果:

第2题

简述:实现电影推荐系统

第1步:读取数据文件(截取较少的数据):

%  Load data
load ('ex8_movies.mat'); % Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies on
% 943 users
%
% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
% rating to movie i % Load pre-trained weights (X, Theta, num_users, num_movies, num_features)
load ('ex8_movieParams.mat'); % Reduce the data set size so that this runs faster
num_users = 4; num_movies = 5; num_features = 3;
X = X(1:num_movies, 1:num_features);
Theta = Theta(1:num_users, 1:num_features);
Y = Y(1:num_movies, 1:num_users);
R = R(1:num_movies, 1:num_users);

第2步:计算代价函数和梯度:

J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...
num_features, 1.5);

其中cofiCostFunc函数:

function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
num_features, lambda) % Unfold the U and W matrices from params
X = reshape(params(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(params(num_movies*num_features+1:end), ...
num_users, num_features); % You need to return the following values correctly
J = 0;
X_grad = zeros(size(X));
Theta_grad = zeros(size(Theta)); cost = (X * Theta' - Y) .* R;
J = 1 / 2 * sum(sum(cost .^ 2));
J = J + lambda / 2 * (sum(sum(Theta .^ 2)) + sum(sum(X .^ 2))); X_grad = cost * Theta;
X_grad = X_grad + lambda * X; Theta_grad = X' * cost;
Theta_grad = Theta_grad' + lambda * Theta; grad = [X_grad(:); Theta_grad(:)]; end

第3步:进行梯度检测:

%  Check gradients by running checkNNGradients
checkCostFunction(1.5);

其中checkCostFunction函数:

function checkCostFunction(lambda)

% Set lambda
if ~exist('lambda', 'var') || isempty(lambda)
lambda = 0;
end %% Create small problem
X_t = rand(4, 3);
Theta_t = rand(5, 3); % Zap out most entries
Y = X_t * Theta_t';
Y(rand(size(Y)) > 0.5) = 0;
R = zeros(size(Y));
R(Y ~= 0) = 1; %% Run Gradient Checking
X = randn(size(X_t));
Theta = randn(size(Theta_t));
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = size(Theta_t, 2); numgrad = computeNumericalGradient( ...
@(t) cofiCostFunc(t, Y, R, num_users, num_movies, ...
num_features, lambda), [X(:); Theta(:)]); [cost, grad] = cofiCostFunc([X(:); Theta(:)], Y, R, num_users, ...
num_movies, num_features, lambda); disp([numgrad grad]);
fprintf(['The above two columns you get should be very similar.\n' ...
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']); diff = norm(numgrad-grad)/norm(numgrad+grad);
fprintf(['If your cost function implementation is correct, then \n' ...
'the relative difference will be small (less than 1e-9). \n' ...
'\nRelative Difference: %g\n'], diff); end

其中computeNumericalGradient函数:

function numgrad = computeNumericalGradient(J, theta)            

numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
% Set perturbation vector
perturb(p) = e;
loss1 = J(theta - perturb);
loss2 = J(theta + perturb);
% Compute Numerical Gradient
numgrad(p) = (loss2 - loss1) / (2*e);
perturb(p) = 0;
end end

  

第4步:对某一用户进行预测,初始化用户的信息:

movieList = loadMovieList();

%  Initialize my ratings
my_ratings = zeros(1682, 1); my_ratings(1) = 4;
my_ratings(98) = 2;
my_ratings(7) = 3;
my_ratings(12)= 5;
my_ratings(54) = 4;
my_ratings(64)= 5;
my_ratings(66)= 3;
my_ratings(69) = 5;
my_ratings(183) = 4;
my_ratings(226) = 5;
my_ratings(355)= 5;

其中loadMovieList函数:

function movieList = loadMovieList()

%% Read the fixed movieulary list
fid = fopen('movie_ids.txt'); % Store all movies in cell array movie{}
n = 1682; % Total number of movies movieList = cell(n, 1);
for i = 1:n
% Read line
line = fgets(fid);
% Word Index (can ignore since it will be = i)
[idx, movieName] = strtok(line, ' ');
% Actual Word
movieList{i} = strtrim(movieName);
end
fclose(fid); end

第5步:将新用户增加到数据集中:

%  Load data
load('ex8_movies.mat'); % Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by
% 943 users
%
% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
% rating to movie i % Add our own ratings to the data matrix
Y = [my_ratings Y];
R = [(my_ratings ~= 0) R];

第6步:均值归一化:

%  Normalize Ratings
[Ynorm, Ymean] = normalizeRatings(Y, R);

其中normalizeRatings函数:

function [Ynorm, Ymean] = normalizeRatings(Y, R)

[m, n] = size(Y);
Ymean = zeros(m, 1);
Ynorm = zeros(size(Y));
for i = 1:m
idx = find(R(i, :) == 1);
Ymean(i) = mean(Y(i, idx));
Ynorm(i, idx) = Y(i, idx) - Ymean(i);
end end

第7步:实现梯度下降,训练模型:

%  Useful Values
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = 10; % Set Initial Parameters (Theta, X)
X = randn(num_movies, num_features);
Theta = randn(num_users, num_features); initial_parameters = [X(:); Theta(:)]; % Set options for fmincg
options = optimset('GradObj', 'on', 'MaxIter', 100); % Set Regularization
lambda = 10;
theta = fmincg (@(t)(cofiCostFunc(t, Ynorm, R, num_users, num_movies, ...
num_features, lambda)), ...
initial_parameters, options); % Unfold the returned theta back into U and W
X = reshape(theta(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(theta(num_movies*num_features+1:end), ...
num_users, num_features);

第8步:实现推荐功能:

p = X * Theta';
my_predictions = p(:,1) + Ymean; movieList = loadMovieList(); [r, ix] = sort(my_predictions, 'descend');
fprintf('\nTop recommendations for you:\n');
for i=1:10
j = ix(i);
fprintf('Predicting rating %.1f for movie %s\n', my_predictions(j), ...
movieList{j});
end

运行结果:

机器学习作业(八)异常检测与推荐系统——Matlab实现的更多相关文章

  1. 基于机器学习的web异常检测

    基于机器学习的web异常检测 Web防火墙是信息安全的第一道防线.随着网络技术的快速更新,新的黑客技术也层出不穷,为传统规则防火墙带来了挑战.传统web入侵检测技术通过维护规则集对入侵访问进行拦截.一 ...

  2. 基于机器学习的web异常检测——基于HMM的状态序列建模,将原始数据转化为状态机表示,然后求解概率判断异常与否

    基于机器学习的web异常检测 from: https://jaq.alibaba.com/community/art/show?articleid=746 Web防火墙是信息安全的第一道防线.随着网络 ...

  3. 机器学习作业(七)非监督学习——Matlab实现

    题目下载[传送门] 第1题 简述:实现K-means聚类,并应用到图像压缩上. 第1步:实现kMeansInitCentroids函数,初始化聚类中心: function centroids = kM ...

  4. 机器学习作业(二)逻辑回归——Matlab实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 第1步:加载数据文件: data = load('ex2data1.txt'); X = data(:, [1, 2]); y = dat ...

  5. Andrew Ng机器学习课程笔记--week9(上)(异常检测&推荐系统)

    本周内容较多,故分为上下两篇文章. 一.内容概要 1. Anomaly Detection Density Estimation Problem Motivation Gaussian Distrib ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  7. Stanford机器学习---第十一讲.异常检测

    之前一直在看Standford公开课machine learning中Andrew老师的视频讲解https://class.coursera.org/ml/class/index 同时配合csdn知名 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测

    [1]异常检测 [2]高斯分布 [3]高斯分布 [4] 异常检测 [5]特征选择 [6] [7]多变量高斯分布 Answer: ACD B 错误.需要矩阵Σ可逆,则要求m>n  测验1 Answ ...

  9. 斯坦福机器学习视频笔记 Week9 异常检测和高斯混合模型 Anomaly Detection

    异常检测,广泛用于欺诈检测(例如“此信用卡被盗?”). 给定大量的数据点,我们有时可能想要找出哪些与平均值有显着差异. 例如,在制造中,我们可能想要检测缺陷或异常. 我们展示了如何使用高斯分布来建模数 ...

随机推荐

  1. 图解Java设计模式之UML类图

    图解Java设计模式之UML类图 3.1 UML基本介绍 UML图 UML类图 3.1 UML基本介绍 1)UML – Unified modeling language UML(统一建模语言),是一 ...

  2. 批量unzip一大堆压缩文件进行文件查询的办法.

    1. 公司里面开发提交的补丁存在问题. 需要找出来 哪些文件有问题 最简单的办法, 想将一对文件 转移到一个目录里面去 然后创建一个 shell 脚本执行解压缩的操作 for i in `ls *.g ...

  3. C# WPF联系人列表(1/3)

    微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. C# WPF联系人列表(1/3) 阅读导航 本文背景 代码实现 本文参考 1.本文背景 聊天软 ...

  4. mysql 连接查询 转换group_concat, find_in_set

    1.a表 2.b表 3.连接(a_u_id 对应b表的b_id) select a.a_id,a.a_u_id,group_concat(b.b_name) from a_tb a left join ...

  5. linux 网络接口,ip地址,路由设定

    本文是基于centos 配置DNS条目: 配置文件:/etc/resolv.conf 修改主机名称: 命令:hostname NAME.重启后失效 配置文件:/etc/sysconfig/networ ...

  6. equals和==的使用

    1.equals的使用: 引用数据类型的比较:通常情况下比较的是引用数据类型下的栈中的地址,但当你重写了equals方法后就不一定了 User user1=new User("tom&quo ...

  7. B. Modulo Equality

    当时想到的第一个想法是用拓展欧几里得解方程,求x的最小正解.一发交了之后发现爆long long,因为m是1e9. 因此本题的正解是暴力,保证有解的情况下,那么a数组中的一个数必然对应着b数组中的一个 ...

  8. 旷视向左、商汤向右,AI一哥之名将落谁家

    编辑 | 于斌 出品 | 于见(mpyujian) AI风口历经多年洗礼之后,真正意义上的AI第一股终于要来了. 相比于聚焦在语音识别技术上的科大讯飞.立足互联网产业的百度.发力人形机器人领域的优必选 ...

  9. 项目启动时报错:java.io.EOFException

    解决方案 删除Tomcat里面的work\Catalina\localhost下的项目文件内容即可解决 问题原因 原因是由于项目测试中class文件或者其它文件更新过频繁

  10. ES6扩展

    模板字符串和标签模板 const getCourseList = function() { // ajax return { status: true, msg: '获取成功', data: [{ i ...