继续复习数据结构和算法,总结一下求解最短路径的一些算法。

弗洛伊德(floyd)算法

弗洛伊德算法是最容易理解的最短路径算法,可以求图中任意两点间的最短距离,但时间复杂度高达\(O(n^3)\),主要思想就是如果想缩短从一个点到另一个点的距离,就必须借助一个中间点进行中转,比如A点到B点借助C点中转的话AB的距离就可以更新为\(D(a,b)=Min(D(a,b),D(a,c)+D(c,b))\),这样我们用每一个结点作为中转结点,尝试对另每两个结点进行距离更新,总共需要三层循环进行遍历。

核心代码如下,图存储在邻接矩阵G中。

	for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
for (int k = 0; k < n; k++)
{
G[j][k] = min(G[j][k], G[j][i] + G[i][k]);
}
}
}

迪杰斯特拉(Dijkstra)算法

迪杰斯特拉算法是一种求解单源最短路径的算法,给定一个结点,可以求出图上各个结点到该结点最短距离。

没学过的话推荐看看这个视频:https://www.bilibili.com/video/av21376839?p=13,从8分钟开始。看完之后基本上就明白了Dijkstra算法的运行过程。总结一下就是不断寻找离源点最近的点并将其作为新的源点去更新其他点到目标点的距离。

代码如下,nowIndex代表当前源点编号,minDis是当前源点到其他点的最短距离,用于选择下一个源点,dis数组存储每个点到最终目标点的距离,也就是结果,mark数组用于标记结点是否被当作源点过。

#include<iostream>
#include<algorithm>
using namespace std; #define inf 100000000 int G[10][10];
int dis[10];
bool mark[10];
int n, m; void dijkstra(int nowIndex)
{
mark[nowIndex] = true;
for (int i = 1; i <= n; i++)//先将跟源点直接相连的结点更新一遍
dis[i] = min(dis[i], G[nowIndex][i]);
for (int i = 1; i < n; i++)//循环n-1次,因为源点已经更新过了
{
int minDis = inf;
for (int j = 1; j <= n; j++)//找离当前源点最近的点
{
if (!mark[j] && dis[j] < minDis)
{
minDis = dis[j];
nowIndex = j;
}
}
mark[nowIndex] = true;
for (int j = 1; j <= n; j++)//用当前源点去更新
dis[j] = min(dis[j], dis[nowIndex] + G[nowIndex][j]);
}
} int main()
{
cin >> n >> m;//输入顶点数和边数
int u, v, w;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i != j)
G[i][j] = inf;
else
G[i][j] = 0;
for (int i = 1; i <= n; i++)
dis[i] = inf;
for (int i = 0; i < m; i++)
{
cin >> u >> v >> w;//输入无向边
G[u][v] = w;
G[v][u] = w;
}
dijkstra(1);//以1号结点为源点
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
} return 0;
}

邻接表实现

使用邻接表存储图能大大降低空间复杂度,代码如下:

#include<iostream>
#include<algorithm>
using namespace std; #define inf 100000000
#define maxN 10000 int value[maxN], to[maxN], nextL[maxN];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m; void dijkstra(int nowIndex)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[nowIndex] = 0;
mark[nowIndex] = true;
for (int i = head[nowIndex]; i; i = nextL[i])
{
dis[to[i]] = min(dis[to[i]], dis[nowIndex] + value[i]);
}
for (int i = 1; i < n; i++)//循环n-1次,因为源点已经更新过了
{
int minDis = inf;
for (int j = 1; j <= n; j++)//找离当前源点最近的点
{
if (!mark[j] && dis[j] < minDis)
{
minDis = dis[j];
nowIndex = j;
}
}
mark[nowIndex] = true;
for (int j = head[nowIndex]; j; j = nextL[j])
{
dis[to[j]] = min(dis[to[j]], dis[nowIndex] + value[j]);
}
}
} void AddLine(int a, int b, int c)
{
total++;
to[total] = b;
value[total] = c;
nextL[total] = head[a];
head[a] = total;
} int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
AddLine(a, b, c);
}
dijkstra(1);
for (int i = 1; i <= n; i++)
cout << dis[i] << " "; return 0;
}

堆优化

普通的Dijkstra时间复杂度为\(O(n^2)\),但可以通过优化达到\(O(nlogn)\),注意在上面的循环中我们每次都要取出离当前源点最近的点,所以可以用优先级队列来优化。每次搜索将修改过dis的点进队,然后每次取队首就是最近的点。

代码如下:

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; #define inf 100000000
#define maxN 10010 int s;
int value[500001], to[500001], nextL[500001];
int head[maxN], total;
int dis[maxN];
bool mark[maxN];
int n, m; typedef pair<int, int> disID;
priority_queue<disID,vector<disID>,greater<disID>> q; void dijkstra(int nowIndex)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[nowIndex] = 0;
q.push(disID(0, nowIndex));
while (!q.empty())
{
int t = q.top().second;
q.pop();
if (mark[t])continue;
mark[t] = true;
for (int i = head[t]; i ; i=nextL[i])
{
if (dis[to[i]] > dis[t] + value[i])
{
dis[to[i]] = dis[t] + value[i];
q.push(disID(dis[to[i]], to[i]));
}
}
}
} void AddLine(int a, int b, int c)
{
total++;
to[total] = b;
value[total] = c;
nextL[total] = head[a];
head[a] = total;
} int main()
{
cin >> n >> m >> s;
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
AddLine(a, b, c);
}
dijkstra(s);
for (int i = 1; i <= n; i++)
{
cout << dis[i] << ' ';
} return 0;
}

Bellman-ford算法

上面的Dijkstra算法存在一个问题就是不能处理存在负权边的情况,只要有边的权值是负数就不能用,这时可以用Bellman-ford算法解决。

Bellman-ford算法的思想是这样的,我们将每条边的起点、权值、终点存储为三个数组from[i],val[i],to[i],然后扫描每一条边,看能不能通过走这条边来使dis[to[i]]减少。

代码很简单如下:

#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; #define inf 100000000
int from[10000], val[10000], to[10000];
int dis[10000];
int n, m; void Bellman_ford(int u)
{
for (int i = 0; i <= n; i++)dis[i] = inf;
dis[u] = 0;
while (true)
{
bool update = false;
for (int i = 1; i <= m; i++)
{
if (dis[from[i]] != inf && dis[to[i]] > dis[from[i]] + val[i])
{
dis[to[i]] = dis[from[i]] + val[i];//更新
update = true;
}
}
if (!update)break;//直到每一条边都不能使dis减少
}
} int main()
{
cin >> n >> m ;
for (int i = 1; i <= m; i++)
{
cin >> from[i] >> to[i] >> val[i];
}
Bellman_ford(1);
for (int i = 1; i <= n; i++)
cout << dis[i] << ' ';
return 0;
}

算法中的while循环最多循环n-1次,所以Bellman-ford的时间复杂度是\(O(mn)\),不仅能处理负权边,而且在稀疏图(顶点数远多于边数)当中比Dijkstra快。

最短路径算法总结(floyd,dijkstra,bellman-ford)的更多相关文章

  1. 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)

    一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...

  2. 最短路径算法之二——Dijkstra算法

    Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...

  3. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  4. 最短路径算法之一——Floyd算法

    Floyd算法 Floyd算法可以用来解决任意两个顶点之间的最短路径问题. 核心公式为: Edge[i][j]=Min{Edge[i][j],Edge[i][k]+Edge[k][j]}. 即通过对i ...

  5. 多源最短路径算法:Floyd算法

    前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...

  6. 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson

    根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...

  7. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  8. 图论——最短路径 Dijkstra算法、Floyd算法

    1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...

  9. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

随机推荐

  1. HDU 1004 Let the Balloon Rise(STL初体验之map)

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  2. 基于 HTML5 WebGL 的智慧楼宇三维可视化监控

    前言 可视化的智慧楼宇在 21 世纪是有急迫需求的,中国被世界称为"基建狂魔",全球高层建筑数量位居首位,所以对于楼宇的监控是必不可少.智慧楼宇可视化系统更多突出的是管理方面的功能 ...

  3. jmeter接口测试(登录、注册)

    Jmeter 进行接口测试流程: Jmeter 的下载地址:http://jmeter.apache.org/download_jmeter.cgi 下面举例说明使用流程,有两种参数传递的方式,我们以 ...

  4. 物理机安装ESXI6.7提示No Network Adapters的解决方案

    下载好ESXI6.7.iso镜像,写入U盘后,提示No Network Adapters,找不到网卡驱动. 解决办法:需要重新封装ESXI,将对应的网卡驱动嵌入进来. 1.先下载VMware-Powe ...

  5. Leetcode:96. 不同的二叉搜索树

    Leetcode:96. 不同的二叉搜索树 Leetcode:96. 不同的二叉搜索树 题目在链接中,点进去看看吧! 先介绍一个名词:卡特兰数 卡特兰数 卡特兰数Cn满足以下递推关系: \[ C_{n ...

  6. Hibernate框架预览以及基础介绍

    前言 从本节我们开始进入到对于Hibernate框架的学习,当前Hibernate框架还未正式发布6.0稳定版本,所以这里我们以5.4.12Final版本进行讲解. Hibernate框架 Hiber ...

  7. Linux监控-历史细项数据回溯

    Linux监控数据回溯 网络服务监控 应用场景: lvs 后端内网端机器网络波动监控: nginx 80.443端口连接监控: mysql 连接监控 以上为抛砖引玉,根据环境安装到监控工具(open ...

  8. c# 匿名方法(函数) 匿名委托 内置泛型委托 lamada

    匿名方法:通过匿名委托 .lamada表达式定义的函数具体操作并复制给委托类型: 匿名委托:委托的一种简单化声明方式通过delegate关键字声明: 内置泛型委托:系统已经内置的委托类型主要是不带返回 ...

  9. Sunset: dusk: Vulnhub Walkthrough

    靶机链接: https://www.vulnhub.com/entry/sunset-dusk,404/ 主机IP扫描: IP端口扫描: 21 端口  pyftpdlib 1.5.5 版本漏洞 25 ...

  10. sql的一般查询语句(增删改查中的查)

    /*例子 判断规则 http://xxx.xxx/new.php?id=57 and 1=1 正确 http://xxx.xxx/new.php?id=57 and 1=2 错误 http://xxx ...