SparkCore、SparkSQL和SparkStreaming的类似之处

SparkStreaming的运行流程

1、我们在集群中的其中一台机器上提交我们的Application Jar,然后就会产生一个Application,开启一个Driver,然后初始化SparkStreaming的程序入口StreamingContext;

2、Master会为这个Application的运行分配资源,在集群中的一台或者多台Worker上面开启Excuter,executer会向Driver注册;

3、Driver服务器会发送多个receiver给开启的excuter,(receiver是一个接收器,是用来接收消息的,在excuter里面运行的时候,其实就相当于一个task任务)

4、receiver接收到数据后,每隔200ms就生成一个block块,就是一个rdd的分区,然后这些block块就存储在executer里面,block块的存储级别是Memory_And_Disk_2;

5、receiver产生了这些block块后会把这些block块的信息发送给StreamingContext;

6、StreamingContext接收到这些数据后,会根据一定的规则将这些产生的block块定义成一个rdd;

SparkStreaming的3个组成部分

离散流(DStream)

例子

简单的单词计数

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

object NetWordCount {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
    val sparkContext = new SparkContext(conf)
    val sc = new StreamingContext(sparkContext,Seconds(2))
    /**
      * 数据的输入
      * */
    val inDStream: ReceiverInputDStream[String] = sc.socketTextStream("bigdata",9999)
    inDStream.print()
    /**
      * 数据的处理
      * */
    val resultDStream: DStream[(String, Int)] = inDStream.flatMap(_.split(",")).map((_,1)).reduceByKey(_+_)
    /**
      * 数据的输出
      * */
    resultDStream.print()

    /**
      *启动应用程序
      * */
    sc.start()
    sc.awaitTermination()
    sc.stop()
  }
}

在Linux上执行以下命令

运行结果

监控HDFS上的一个目录

HDFS上的目录需要先创建

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}

object HDFSWordCount {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName(this.getClass.getSimpleName)
    val sc = new StreamingContext(conf,Seconds(2))

    val inDStream: DStream[String] = sc.textFileStream("hdfs://hadoop1:9000/streaming")
    val resultDStream: DStream[(String, Int)] = inDStream.flatMap(_.split(",")).map((_,1)).reduceByKey(_+_)
    resultDStream.print()

    sc.start()
    sc.awaitTermination()
    sc.stop()
  }
}

student.txt

95002,刘晨,女,19,IS
95017,王风娟,女,18,IS
95018,王一,女,19,IS
95013,冯伟,男,21,CS
95014,王小丽,女,19,CS
95019,邢小丽,女,19,IS

运行结果,默认展示的10条

第二次运行的时候更新原先的结果

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object UpdateWordCount {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
    System.setProperty("HADOOP_USER_NAME","hadoop")
    val sparkContext = new SparkContext(conf)

    val sc = new StreamingContext(sparkContext,Seconds(2))

    sc.checkpoint("hdfs://hadoop1:9000/streaming")
    val inDStream: ReceiverInputDStream[String] = sc.socketTextStream("hadoop1",9999)

    val resultDStream: DStream[(String, Int)] = inDStream.flatMap(_.split(","))
      .map((_, 1))
      .updateStateByKey((values: Seq[Int], state: Option[Int]) => {
        val currentCount: Int = values.sum
        val lastCount: Int = state.getOrElse(0)
        Some(currentCount + lastCount)
      })
    resultDStream.print()

    sc.start()
    sc.awaitTermination()
    sc.stop()
  }
}

Linux运行命令

运行结果

DriverHA

5.3的代码一直运行,结果可以一直累加,但是代码一旦停止运行,再次运行时,结果会不会接着上一次进行计算,上一次的计算结果丢失了,主要原因上每次程序运行都会初始化一个程序入口,而2次运行的程序入口不是同一个入口,所以会导致第一次计算的结果丢失,第一次的运算结果状态保存在Driver里面,所以我们如果想用上一次的计算结果,我们需要将上一次的Driver里面的运行结果状态取出来,而5.3里面的代码有一个checkpoint方法,它会把上一次Driver里面的运算结果状态保存在checkpoint的目录里面,我们在第二次启动程序时,从checkpoint里面取出上一次的运行结果状态,把这次的Driver状态恢复成和上一次Driver一样的状态

Spark学习之路 (二十三)SparkStreaming的官方文档[转]的更多相关文章

  1. Spark学习之路 (二十二)SparkStreaming的官方文档

    官网地址:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.简介 1.1 概述 Spark Streamin ...

  2. Spark学习之路 (二十三)SparkStreaming的官方文档

    一.SparkCore.SparkSQL和SparkStreaming的类似之处 二.SparkStreaming的运行流程 2.1 图解说明 2.2 文字解说 1.我们在集群中的其中一台机器上提交我 ...

  3. Spark(十四)SparkStreaming的官方文档

    一.SparkCore.SparkSQL和SparkStreaming的类似之处 二.SparkStreaming的运行流程 2.1 图解说明 2.2 文字解说 1.我们在集群中的其中一台机器上提交我 ...

  4. Spark学习之路(十三)—— Spark Streaming 与流处理

    一.流处理 1.1 静态数据处理 在流处理之前,数据通常存储在数据库,文件系统或其他形式的存储系统中.应用程序根据需要查询数据或计算数据.这就是传统的静态数据处理架构.Hadoop采用HDFS进行数据 ...

  5. Spark学习之路 (十三)SparkCore的调优之资源调优JVM的基本架构

    一.JVM的结构图 1.1 Java内存结构 JVM内存结构主要有三大块:堆内存.方法区和栈. 堆内存是JVM中最大的一块由年轻代和老年代组成,而年轻代内存又被分成三部分,Eden空间.From Su ...

  6. 嵌入式Linux驱动学习之路(二十三)NAND FLASH驱动程序

    NAND FLASH是一个存储芯片. 在芯片上的DATA0-DATA7上既能传输数据也能传输地址. 当ALE为高电平时传输的是地址. 当CLE为高电平时传输的是命令. 当ALE和CLE都为低电平时传输 ...

  7. IOS学习之路二十三(EGOImageLoading异步加载图片开源框架使用)

    EGOImageLoading 是一个用的比较多的异步加载图片的第三方类库,简化开发过程,我们直接传入图片的url,这个类库就会自动帮我们异步加载和缓存工作:当从网上获取图片时,如果网速慢图片短时间内 ...

  8. 流媒体技术学习笔记之(六)FFmpeg官方文档先进音频编码(AAC)

    先进音频编码(AAC)的后继格式到MP3,和以MPEG-4部分3(ISO / IEC 14496-3)被定义.它通常用于MP4容器格式; 对于音乐,通常使用.m4a扩展名.第二最常见的用途是在MKV( ...

  9. 看官方文档学习springcloud搭建

    很多java的朋友学习新知识时候去百度,看了之后一知半解,不知道怎么操作,不知道到底什么什么东西,那么作为java码农到底该怎么学习额 一  百度是对还是错呢? 百度是一个万能的工具,当然是对也是错的 ...

随机推荐

  1. qt creator源码全方面分析(2-10-1)

    目录 Getting and Building Qt Creator 获取Qt 获取和构建Qt Creator Getting and Building Qt Creator 待办事项:应该对此进行扩 ...

  2. Linux恢复删除的文件

    linux恢复删除的文件 先介绍下一些文件的基本概念: ·         文件实际上是一个指向inode的链接, inode链接包含了文件的所有属性, 比如权限和所有者, 数据块地址(文件存储在磁盘 ...

  3. 2000_narrowband to wideband conversion of speech using GMM based transformation

    论文地址:基于GMM的语音窄带到宽带转换 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12151027.html 摘要 在不改变现有通信网络的情 ...

  4. 实际开发常用的jquey事件类型,并运用到图片相册

    鼠标事件 .click  鼠标单击 .dblclick  鼠标双击 // 单击事件 $("a").click(function(){ $("img").eq($ ...

  5. SAP 对HU做转库操作,系统报错 - 系统状态HUAS是活动的 - 分析

    SAP 对HU做转库操作,系统报错 - 系统状态HUAS是活动的 - 分析 近日收到业务团队报的问题,说是对某个HU做转库时候,系统报错.如下图示: HU里有是三个序列号, 1191111034011 ...

  6. Android Studio 学习笔记(四):Adapter和RecyclerView说明

    在现版本中,滚动控件有多种,而相比于ListView,GridView,RecyclerView的用途更广,因此将前两者作为Adapter适配器的引入,再对RecyclerView进行简单讲解. MV ...

  7. 百度大脑EasyEdge端模型生成部署攻略

    EasyEdge是百度基于Paddle Mobile研发的端计算模型生成平台,能够帮助深度学习开发者将自建模型快速部署到设备端.只需上传模型,最快2分种即可生成端计算模型并获取SDK.本文介绍Easy ...

  8. BOS只读状态修改

    update T_META_OBJECTTYPE set FSUPPLIERNAME ='PAEZ',FPACKAGEID =null

  9. scons自动化构建工具

    方式一 可以官方下载,安装使用 方式二 使用 RT-Thread env工具,其中集成了scons工具 env工具配置 打开设置 添加到右键菜单 使用scons生成mdk5工程 > scons ...

  10. Ubuntu系统下使用php7+mysql+apache2搭建自己的博客

    很多人都有写博客的习惯,奈何国内的博客网站正在一家家地关闭与重整,部分博客网站也充斥着太多的广告,使用体验非常不好.对于爱写博客的朋友来说,其实还有一个更好的选择,那就是自己搭建一个博客. 搭建一个自 ...