下面简单列举几种常用的推荐系统评测指标:

1、准确率与召回率(Precision & Recall)

准确率召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率

一般来说,Precision就是检索出来的条目(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。

正确率、召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价指标。不妨看看这些指标的定义先:

1. 正确率 = 提取出的正确信息条数 /  提取出的信息条数

2. 召回率 = 提取出的正确信息条数 /  样本中的信息条数

两者取值在0和1之间,数值越接近1,查准率或查全率就越高。

3. F值  = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值)

不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%

由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。

当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。

2、综合评价指标(F-Measure)

P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。

F-Measure是Precision和Recall加权调和平均

当参数α=1时,就是最常见的F1,也即

可知F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。

3、E值

E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式:

b越大,表示查准率的权重越大。

4、平均正确率(Average Precision, AP)

平均正确率表示不同查全率的点上的正确率的平均。

原文链接:http://blog.csdn.net/taohuaxinmu123/article/details/9833001

本文链接:http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。

数据集中 : 正例 反例
你的预测 正例 : A B
你的预测 反例 : C D
准确率就是A/(A+B) 大白话就是“你的预测有多少是对的”
召回率就是A/(A+C) 大白话就是“正例里你的预测覆盖了多少”

作者:郭涛
链接:https://www.zhihu.com/question/19645541/answer/15536424
来源:知乎
著作权归作者所有,转载请联系作者获得授权。

准确率,召回率,F值,机器学习分类问题的评价指标的更多相关文章

  1. 准确率,召回率,F值,ROC,AUC

    度量表 1.准确率 (presion) p=TPTP+FP 理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例 ...

  2. 查全率(召回率)、精度(准确率)和F值

    文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一 ...

  3. 机器学习笔记--classification_report&精确度/召回率/F1值

    https://blog.csdn.net/akadiao/article/details/78788864 准确率=正确数/预测正确数=P 召回率=正确数/真实正确数=R F1 F1值是精确度和召回 ...

  4. 分类器评估方法:精确度-召回率-F度量(precision-recall-F_measures)

    注:本文是人工智能研究网的学习笔记 Precision和Recall都能够从下面的TP,TN,FP,FN里面计算出来. 几个缩写的含义: 缩写 含义 P condition positive N co ...

  5. [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法

    分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...

  6. 准确率、精确率、召回率、F1

    在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...

  7. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  8. fashion_mnist 计算准确率、召回率、F1值

    本文发布于 2020-12-27,很可能已经过时 fashion_mnist 计算准确率.召回率.F1值 1.定义 首先需要明确几个概念: 假设某次预测结果统计为下图: 那么各个指标的计算方法为: A ...

  9. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

随机推荐

  1. Codeforces 235E. Number Challenge DP

    dp(a,b,c,p) = sigma ( dp(a/p^i,b/p^j,c/p^k) * ( 1+i+j+k) ) 表示用小于等于p的素数去分解的结果有多少个 E. Number Challenge ...

  2. Sublime Text 2搭建Go开发环境,代码提示+补全+调试

    本文在已安装Go环境的前提下继续. 1.安装Sublime Text 2 2.安装Package Control. 运行Sublime,按下 Ctrl+`(`在Tab键上边),然后输入以下内容: im ...

  3. Visio中如何绘制黑白图像

  4. DELPHI实现关机,兼容全部WINDOWS系统 转

    {=================================================================================================== ...

  5. 自定义一个可以被序列化的泛型Dictionary<TKey,TValue>集合

    Dictionary是一个键值类型的集合.它有点像数组,但Dictionary的键可以是任何类型,内部使用Hash Table存储键和值.本篇自定义一个类型安全的泛型Dictionary<TKe ...

  6. 使用SQL Database Migration Wizard把SQL Server 2008迁移到Windows Azure SQL Database

    本篇体验使用SQL Database Migration Wizard(SQLAzureMW)将SQL Server 2008数据库迁移到 Azure SQL Database.当然,SQLAzure ...

  7. Spring Cloud Gateway服务网关

    原文:https://www.cnblogs.com/ityouknow/p/10141740.html Spring 官方最终还是按捺不住推出了自己的网关组件:Spring Cloud Gatewa ...

  8. C#编程(四十)----------运算符重载

    运算符重载 所谓的运算符重载是指允许用户使用用户定义的类型编写表达式的能力. 例如,通常需要编写类似与以下内容的代码,入江两个数字相加,很明显,sum是两个数字之和. int i=5,j=4; int ...

  9. Winfrom固定Label宽度,根据文本动态改变Label的高度 z

    Label,要固定住宽度,然后根据文本的长度来动态改变高度,一开始去网上找解决方案,各种根据字体大小啊,字数啊来动态改变,但是效果却不怎么好.最后灵机一动,想起了偶尔用过一次的FlowLayoutPa ...

  10. cvCreateStumpClassifier

    CV_BOOST_IMPL CvClassifier* cvCreateStumpClassifier( CvMat* trainData, //训练样本的数据,包含图像大小.数量,类别,权重等 in ...