MATLAB实现多元线性回归预测
一、简单的多元线性回归:
data.txt
,230.1,37.8,69.2,22.1
,44.5,39.3,45.1,10.4
,17.2,45.9,69.3,9.3
,151.5,41.3,58.5,18.5
,180.8,10.8,58.4,12.9
,8.7,48.9,,7.2
,57.5,32.8,23.5,11.8
,120.2,19.6,11.6,13.2
,8.6,2.1,,4.8
,199.8,2.6,21.2,10.6
,66.1,5.8,24.2,8.6
,214.7,,,17.4
,23.8,35.1,65.9,9.2
,97.5,7.6,7.2,9.7
,204.1,32.9,,
,195.4,47.7,52.9,22.4
,67.8,36.6,,12.5
,281.4,39.6,55.8,24.4
,69.2,20.5,18.3,11.3
,147.3,23.9,19.1,14.6
,218.4,27.7,53.4,
,237.4,5.1,23.5,12.5
,13.2,15.9,49.6,5.6
,228.3,16.9,26.2,15.5
,62.3,12.6,18.3,9.7
,262.9,3.5,19.5,
,142.9,29.3,12.6,
,240.1,16.7,22.9,15.9
,248.8,27.1,22.9,18.9
,70.6,,40.8,10.5
,292.9,28.3,43.2,21.4
,112.9,17.4,38.6,11.9
,97.2,1.5,,9.6
,265.6,,0.3,17.4
,95.7,1.4,7.4,9.5
,290.7,4.1,8.5,12.8
,266.9,43.8,,25.4
,74.7,49.4,45.7,14.7
,43.1,26.7,35.1,10.1
,,37.7,,21.5
,202.5,22.3,31.6,16.6
,,33.4,38.7,17.1
,293.6,27.7,1.8,20.7
,206.9,8.4,26.4,12.9
,25.1,25.7,43.3,8.5
,175.1,22.5,31.5,14.9
,89.7,9.9,35.7,10.6
,239.9,41.5,18.5,23.2
,227.2,15.8,49.9,14.8
,66.9,11.7,36.8,9.7
,199.8,3.1,34.6,11.4
,100.4,9.6,3.6,10.7
,216.4,41.7,39.6,22.6
,182.6,46.2,58.7,21.2
,262.7,28.8,15.9,20.2
,198.9,49.4,,23.7
,7.3,28.1,41.4,5.5
,136.2,19.2,16.6,13.2
,210.8,49.6,37.7,23.8
,210.7,29.5,9.3,18.4
,53.5,,21.4,8.1
,261.3,42.7,54.7,24.2
,239.3,15.5,27.3,15.7
,102.7,29.6,8.4,
,131.1,42.8,28.9,
,,9.3,0.9,9.3
,31.5,24.6,2.2,9.5
,139.3,14.5,10.2,13.4
,237.4,27.5,,18.9
,216.8,43.9,27.2,22.3
,199.1,30.6,38.7,18.3
,109.8,14.3,31.7,12.4
,26.8,,19.3,8.8
,129.4,5.7,31.3,
,213.4,24.6,13.1,
,16.9,43.7,89.4,8.7
,27.5,1.6,20.7,6.9
,120.5,28.5,14.2,14.2
,5.4,29.9,9.4,5.3
,,7.7,23.1,
,76.4,26.7,22.3,11.8
,239.8,4.1,36.9,12.3
,75.3,20.3,32.5,11.3
,68.4,44.5,35.6,13.6
,213.5,,33.8,21.7
,193.2,18.4,65.7,15.2
,76.3,27.5,,
,110.7,40.6,63.2,
,88.3,25.5,73.4,12.9
,109.8,47.8,51.4,16.7
,134.3,4.9,9.3,11.2
,28.6,1.5,,7.3
,217.7,33.5,,19.4
,250.9,36.5,72.3,22.2
,107.4,,10.9,11.5
,163.3,31.6,52.9,16.9
,197.6,3.5,5.9,11.7
,184.9,,,15.5
,289.7,42.3,51.2,25.4
,135.2,41.7,45.9,17.2
,222.4,4.3,49.8,11.7
,296.4,36.3,100.9,23.8
,280.2,10.1,21.4,14.8
,187.9,17.2,17.9,14.7
,238.2,34.3,5.3,20.7
,137.9,46.4,,19.2
,,,29.7,7.2
,90.4,0.3,23.2,8.7
,13.1,0.4,25.6,5.3
,255.4,26.9,5.5,19.8
,225.8,8.2,56.5,13.4
,241.7,,23.2,21.8
,175.7,15.4,2.4,14.1
,209.6,20.6,10.7,15.9
,78.2,46.8,34.5,14.6
,75.1,,52.7,12.6
,139.2,14.3,25.6,12.2
,76.4,0.8,14.8,9.4
,125.7,36.9,79.2,15.9
,19.4,,22.3,6.6
,141.3,26.8,46.2,15.5
,18.8,21.7,50.4,
,,2.4,15.6,11.6
,123.1,34.6,12.4,15.2
,229.5,32.3,74.2,19.7
,87.2,11.8,25.9,10.6
,7.8,38.9,50.6,6.6
,80.2,,9.2,8.8
,220.3,,3.2,24.7
,59.6,,43.1,9.7
,0.7,39.6,8.7,1.6
,265.2,2.9,,12.7
,8.4,27.2,2.1,5.7
,219.8,33.5,45.1,19.6
,36.9,38.6,65.6,10.8
,48.3,,8.5,11.6
,25.6,,9.3,9.5
,273.7,28.9,59.7,20.8
,,25.9,20.5,9.6
,184.9,43.9,1.7,20.7
,73.4,,12.9,10.9
,193.7,35.4,75.6,19.2
,220.5,33.2,37.9,20.1
,104.6,5.7,34.4,10.4
,96.2,14.8,38.9,11.4
,140.3,1.9,,10.3
,240.1,7.3,8.7,13.2
,243.2,,44.3,25.4
,,40.3,11.9,10.9
,44.7,25.8,20.6,10.1
,280.7,13.9,,16.1
,,8.4,48.7,11.6
,197.6,23.3,14.2,16.6
,171.3,39.7,37.7,
,187.8,21.1,9.5,15.6
,4.1,11.6,5.7,3.2
,93.9,43.5,50.5,15.3
,149.8,1.3,24.3,10.1
,11.7,36.9,45.2,7.3
,131.7,18.4,34.6,12.9
,172.5,18.1,30.7,14.4
,85.7,35.8,49.3,13.3
,188.4,18.1,25.6,14.9
,163.5,36.8,7.4,
,117.2,14.7,5.4,11.9
,234.5,3.4,84.8,11.9
,17.9,37.6,21.6,
,206.8,5.2,19.4,12.2
,215.4,23.6,57.6,17.1
,284.3,10.6,6.4,
,,11.6,18.4,8.4
,164.5,20.9,47.4,14.5
,19.6,20.1,,7.6
,168.4,7.1,12.8,11.7
,222.4,3.4,13.1,11.5
,276.9,48.9,41.8,
,248.4,30.2,20.3,20.2
,170.2,7.8,35.2,11.7
,276.7,2.3,23.7,11.8
,165.6,,17.6,12.6
,156.6,2.6,8.3,10.5
,218.5,5.4,27.4,12.2
,56.2,5.7,29.7,8.7
,287.6,,71.8,26.2
,253.8,21.3,,17.6
,,45.1,19.6,22.6
,139.5,2.1,26.6,10.3
,191.1,28.7,18.2,17.3
,,13.9,3.7,15.9
,18.7,12.1,23.4,6.7
,39.5,41.1,5.8,10.8
,75.5,10.8,,9.9
,17.2,4.1,31.6,5.9
,166.8,,3.6,19.6
,149.7,35.6,,17.3
,38.2,3.7,13.8,7.6
,94.2,4.9,8.1,9.7
,,9.3,6.4,12.8
,283.6,,66.2,25.5
,232.1,8.6,8.7,13.4
回归代码:
% A=importdata('data.txt',' ',);%????????A.data
a = load('data.txt');
x1=a(:,[]) ;
x2=a(:,[]) ;
x3=a(:,[]) ;
y=a(:,[]);
X=[ones(length(y),), x1,x2,x3];
[b,bint,r,rint,stats]=regress(y,X);
b;bint;stats;
rcoplot(r,rint)
tx=[230.1,37.8,69.2];
b2=[b(),b(),b()];
ty=b()+b2*tx';
ty;
简单的得到一个变换的公式
y=b(1)+b(2)*x1+b(3)*x2+b(3)*x3;
二、ridge regression岭回归
其实就是在回归前对数据进行预处理,去掉一些偏差数据的影响。
1、一般线性回归遇到的问题
在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:
- 预测精度:这里要处理好这样一对为题,即样本的数量
和特征的数量
时,最小二乘回归会有较小的方差
时,容易产生过拟合
时,最小二乘回归得不到有意义的结果
- 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择。
以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明:
(摘自:机器学习实战)
方差指的是模型之间的差异,而偏差指的是模型预测值和数据之间的差异。我们需要找到方差和偏差的折中。
2、岭回归的概念
在进行特征选择时,一般有三种方式:
- 子集选择
- 收缩方式(Shrinkage method),又称为正则化(Regularization)。主要包括岭回归个lasso回归。
- 维数缩减
岭回归(Ridge Regression)是在平方误差的基础上增加正则项
,
通过确定的值可以使得在方差和偏差之间达到平衡:随着
的增大,模型方差减小而偏差增大。
对求导,结果为
令其为0,可求得的值:
3、实验的过程
我们去探讨一下取不同的对整个模型的影响。
MATLAB代码
function [ w ] = ridgeRegression( x, y, lam )
xTx = x'*x;
[m,n] = size(xTx);
temp = xTx + eye(m,n)*lam;
if det(temp) ==
disp('This matrix is singular, cannot do inverse');
end
w = temp^(-)*x'*y;
end
%% ???(Ridge Regression)
clc;
%????
data = load('data.txt');
[m,n] = size(data); dataX = data(:,:);%??
dataY = data(:,);%?? %???
yMeans = mean(dataY);
for i = :m
yMat(i,:) = dataY(i,:)-yMeans;
end xMeans = mean(dataX);
xVars = var(dataX);
for i = :m
xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
end % ???
testNum = ;
weights = zeros(testNum, n-);
for i = :testNum
w = ridgeRegression(xMat, yMat, exp(i-));
weights(i,:) = w';
end % ??????lam
hold on
axis([- -1.0 2.5]);
xlabel log(lam);
ylabel weights;
for i = :n-
x = -:;
y(,:) = weights(:,i)';
plot(x,y);
end
plot出来的图像显示,k=5的时候,出现了拟合,因此取k=5时的w值,
% resualt output ,i=5
w = ridgeRegression(xMat, yMat, exp(5-10));
三、另外一个岭回归比较好的例子
function [b,bint,r,rint,stats] = ridge1(Y,X,k)
[n,p] = size(X);
mx = mean (X);
my = mean (Y);
stdx = std(X);
stdy=std(Y);
idx = find(abs(stdx) < sqrt(eps));
MX = mx(ones(n,),:);
STDX = stdx(ones(n,),:);
Z = (X - MX) ./ STDX;Y=(Y-my)./stdy;
pseudo = sqrt(k*(n-)) * eye(p);
Zplus = [Z;pseudo];
Yplus = [Y;zeros(p,)];
[b,bint,r,rint,stats] = regress(Yplus,Zplus);
end
x=[71.35 22.90 3.76 1158.18 12.20 55.87;
67.92 17.11 1494.38 19.82 56.60;
79.38 24.91 33.60 691.56 16.17 92.78;
87.97 10.18 0.73 923.04 12.15 24.66;
59.03 7.71 3.58 696.92 13.50 61.81;
55.23 22.94 1.34 1083.84 10.76 49.79;
58.30 12.78 5.25 1180.36 9.58 57.02;
67.43 9.59 2.92 797.72 16.82 38.29;
76.63 15.12 2.55 919.49 17.79 32.07];
y=[28.46;27.76;26.02;33.29;40.84;44.50;28.09;46.24; 45.21];
x'*x;
count=;
kvec=0.1:0.1:;
for k=0.1:0.1:
count=count+;
[b,bint,r,rint,stats]=ridge1(y,x,k);
bb(:,count)=b;
stats1(count,:)=stats;
end
bb',stats1
plot(kvec',bb),xlabel('k'),ylabel('b','FontName','Symbo l')
从运行结果及图1可见,k≥0.7时每个变量相应
的岭回归系数变化较为稳定,因而可选k=0.7,建立 岭回归方程
y=-0.219 5x1-0.120 2x2-0.237 8x3- 0.244 6x4+0.203 6x5-0.249 4x6
MATLAB实现多元线性回归预测的更多相关文章
- Python 实现多元线性回归预测
一.二元输入特征线性回归 测试数据为:ex1data2.txt ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ...
- R语言 多元线性回归分析
#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公 ...
- R与数据分析旧笔记(六)多元线性分析 下
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题 ...
- Tensorflow 线性回归预测房价实例
在本节中将通过一个预测房屋价格的实例来讲解利用线性回归预测房屋价格,以及在tensorflow中如何实现 Tensorflow 线性回归预测房价实例 1.1. 准备工作 1.2. 归一化数据 1.3. ...
- 机器学习01:使用scikit-learn的线性回归预测Google股票
这是机器学习系列的第一篇文章. 本文将使用Python及scikit-learn的线性回归预测Google的股票走势.请千万别期望这个示例能够让你成为股票高手.下面按逐步介绍如何进行实践. 准备数据 ...
- C# chart.DataManipulator.FinancialFormula()公式的使用 线性回归预测方法
最近翻阅资料,找到 chart.DataManipulator.FinancialFormula()公式的使用,打开另一扇未曾了解的窗,供大家分享一下. 一 DataManipulator类 运行时, ...
- fslove - Matlab求解多元多次方程组
fslove - Matlab求解多元多次方程组 简介: 之前看到网上的一些资料良莠不齐,各种转载之类的,根本无法解决实际问题,所以我打算把自己的学到的总结一下,以实例出发讲解fsolve. 示例如下 ...
- MATLAB——神经网络构造线性层函数linearlayer
% example5_7.m x=-:; y=*x-; randn(); % 设置种子,便于重复执行 y=y+randn(,length(y))*1.5; % 加入噪声的直线 plot(x,y,'o' ...
- matlab 实现感知机线性二分类算法(Perceptron)
感知机是简单的线性分类模型 ,是二分类模型.其间用到随机梯度下降方法进行权值更新.参考他人代码,用matlab实现总结下. 权值求解过程通过Perceptron.m函数完成 function W = ...
随机推荐
- VC++对话框中加状态栏
原文链接: http://blog.chinaunix.net/uid-9847882-id-1996528.html 方法一:1.添加成员变量CStatusBarCtrl m_StatusBar;2 ...
- Shell脚本开发规范
一.前言 由于工作需要,最近重新开始拾掇shell脚本.虽然绝大部分命令自己平时也经常使用,但是在写成脚本的时候总觉得写的很难看.而且当我在看其他人写的脚本的时候,总觉得难以阅读.毕竟shell脚本这 ...
- Python 文件 truncate() 方法
概述 Python 文件 truncate() 方法用于截断文件并返回截断的字节长度. 指定长度的话,就从文件的开头开始截断指定长度,其余内容删除:不指定长度的话,就从文件开头开始截断到当前位置,其余 ...
- [转]springSecurity源码分析—DelegatingFilterProxy类的作用
使用过springSecurity的朋友都知道,首先需要在web.xml进行以下配置, <filter> <filter-name>springSecurityFilterC ...
- 活久见: 原来 Chrome 浏览器支持 Import from 语法
需要满足以下三个条件: 1.高版本的Chrome ,总而言之越新越好……,其他浏览器请参考:https://caniuse.com/#search=import 2.必须在服务器环境下才能运行,譬如a ...
- Intellij Idea生成serialVersionUID的方法
默认情况下Intellij IDEA是关闭了继承了java.io.Serializable的类生成serialVersionUID的警告.如果需要ide提示生成serialVersionUID,那么需 ...
- An introduction to High Availability Architecture
https://www.getfilecloud.com/blog/an-introduction-to-high-availability-architecture/ An introduction ...
- 使用Windows 10专业版 进行VS2017开发 遇到 HTTP Error 400. The request hostname is invalid
使用IIS Express 支持非localhost访问 只要使用域名或者本机IP地址都无法进行 iisexpress 调试 公网ip,还是127.0.0.1都出现上面那个错误 主要是新的系统环境 ...
- Android开发中adb命令的常用方法
Android的SDK中提供了很多有用的工具,在开发过程中如果能熟练使用这些工具,会让我们的开发事半功倍.adb是SDK提供的一个常用的命令行工具,全称为Android Debug Bridge,用于 ...
- 群主微信sdk说明地址
群主微信sdk说明地址官网地址:http://weixin.senparc.com/ 源代码及最新更新:https://github.com/JeffreySu/WeiXinMPSDK 最新DLL发布 ...