Maximum Submatrix & Largest Rectangle
相关题型
问题一(最大和子矩阵) : 有一个 m x n 的矩阵,矩阵的元素可正可负。请找出该矩阵的一个子矩阵(方块),使得其所有元素之和在所有子矩阵中最大。(问题来源:http://acm.pku.edu.cn/JudgeOnline/problem?id=1050)
问题二( 最大 0/1 方块) :有一个 m x n 的矩阵,元素为 0 或 1。一个子矩阵,如果它所有的元素都是 0, 或者都是 1,则称其为一个 0-聚类 或 1-聚类,统称聚类(Cluster)。请找出最大的聚类(元素最多的聚类)(面试题)
这两个问题,除了都是在矩阵上操作之外,似乎没有什么共同之处。其实不然。事实上,它们可以用同一个思路解决。该思路来源于下面的一个问题,具体地说,就是把前两个问题化归成多个问题三:
问题三(和最大的段) :有 n 个有正有负的数排成一行,求某个连续的段,使得其元素之和最大。(问题来源:某面试题。事实上,这也是一道经典题目,具体参考 http://en.wikipedia.org/wiki/Maximum_subarray_problem)
问题四(最大长方形) : 有一个有 n 个项的统计直方图,假定所有的直方条 (bar) 的宽度一样。在所有边与 x 轴 和 y 轴平行的长方形中,求该被该直方图包含的面积最大的长方形。(问题来源:面试经典题目)
参考
分析:动态规划,从左上角开始,如果当前位置为1,那么到当前位置包含的最大正方形边长为左/左上/上的值中的最小值加一,因为边长是由短板控制的。
最大子矩阵和问题可以类比于最大字段和问题,从一维变成二维,dp思路,在输入的时候做一个处理,让a[i,j]变为存放前i行j列的和,降低复杂度。状态转移方程为sum[k+1]=sum[k]<0?0:sum[k]+a[i,j];表示第k行i到j的和。因为a[i,j]为存放前i行j列的和,所以a[i,j]=a[k,j]-a[k,i-1];
// Program to find maximum sum subarray in a given 2D array
#include <stdio.h>
#include <string.h>
#include <limits.h>
#define ROW 4
#define COL 5
// Implementation of Kadane's algorithm for 1D array. The function
// returns the maximum sum and stores starting and ending indexes of the
// maximum sum subarray at addresses pointed by start and finish pointers
// respectively.
int kadane(int* arr, int* start, int* finish, int n)
{
// initialize sum, maxSum and
int sum = 0, maxSum = INT_MIN, i;
// Just some initial value to check for all negative values case
*finish = -1;
// local variable
int local_start = 0;
for (i = 0; i < n; ++i)
{
sum += arr[i];
if (sum < 0)
{
sum = 0;
local_start = i+1;
}
else if (sum > maxSum)
{
maxSum = sum;
*start = local_start;
*finish = i;
}
}
// There is at-least one non-negative number
if (*finish != -1)
return maxSum;
// Special Case: When all numbers in arr[] are negative
maxSum = arr[0];
*start = *finish = 0;
// Find the maximum element in array
for (i = 1; i < n; i++)
{
if (arr[i] > maxSum)
{
maxSum = arr[i];
*start = *finish = i;
}
}
return maxSum;
}
// The main function that finds maximum sum rectangle in M[][]
void findMaxSum(int M[][COL])
{
// Variables to store the final output
int maxSum = INT_MIN, finalLeft, finalRight, finalTop, finalBottom;
int left, right, i;
int temp[ROW], sum, start, finish;
// Set the left column
for (left = 0; left < COL; ++left)
{
// Initialize all elements of temp as 0
memset(temp, 0, sizeof(temp));
// Set the right column for the left column set by outer loop
for (right = left; right < COL; ++right)
{
// Calculate sum between current left and right for every row 'i'
for (i = 0; i < ROW; ++i)
temp[i] += M[i][right];
// Find the maximum sum subarray in temp[]. The kadane()
// function also sets values of start and finish. So 'sum' is
// sum of rectangle between (start, left) and (finish, right)
// which is the maximum sum with boundary columns strictly as
// left and right.
sum = kadane(temp, &start, &finish, ROW);
// Compare sum with maximum sum so far. If sum is more, then
// update maxSum and other output values
if (sum > maxSum)
{
maxSum = sum;
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
}
}
}
// Print final values
printf("(Top, Left) (%d, %d)\n", finalTop, finalLeft);
printf("(Bottom, Right) (%d, %d)\n", finalBottom, finalRight);
printf("Max sum is: %d\n", maxSum);
}
// Driver program to test above functions
int main()
{
int M[ROW][COL] = {{1, 2, -1, -4, -20},
{-8, -3, 4, 2, 1},
{3, 8, 10, 1, 3},
{-4, -1, 1, 7, -6}
};
findMaxSum(M);
return 0;
}
Maximum Submatrix & Largest Rectangle的更多相关文章
- [POJ2559&POJ3494] Largest Rectangle in a Histogram&Largest Submatrix of All 1’s 「单调栈」
Largest Rectangle in a Histogram http://poj.org/problem?id=2559 题意:给出若干宽度相同的矩形的高度(条形统计图),求最大子矩形面积 解题 ...
- LeetCode之“动态规划”:Maximal Square && Largest Rectangle in Histogram && Maximal Rectangle
1. Maximal Square 题目链接 题目要求: Given a 2D binary matrix filled with 0's and 1's, find the largest squa ...
- LeetCode解题报告—— Minimum Window Substring && Largest Rectangle in Histogram
1. Minimum Window Substring Given a string S and a string T, find the minimum window in S which will ...
- [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- poj 2559 Largest Rectangle in a Histogram - 单调栈
Largest Rectangle in a Histogram Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19782 ...
- LeetCode 笔记系列 17 Largest Rectangle in Histogram
题目: Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar he ...
- LeetCode: Largest Rectangle in Histogram(直方图最大面积)
http://blog.csdn.net/abcbc/article/details/8943485 具体的题目描述为: Given n non-negative integers represent ...
- DP专题训练之HDU 1506 Largest Rectangle in a Histogram
Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...
- Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
随机推荐
- 4,EasyNetQ-Request Response
EasyNetQ还支持请求/响应消息传递模式. 这使得客户端/服务器应用程序变得容易,客户机/服务器应用程序在客户端向服务器发出请求,然后处理请求并返回响应. 与传统的RPC机制不同,EasyNetQ ...
- Centos 7.4下 部署openstack Queens 计算节点qemu高版本问题
sed -i 's/$contentdir/centos/g' /etc/yum.repos.d/CentOS-QEMU-EV.repo 这样既可正常安装compute服务
- flask run方法和run_simple
1.Flask提供的Web服务器不适合在生产环境中使用 2.run方法启动flask集成的服务器: 例: if __name__ == '__main__': app.run(debug=True) ...
- (84)Wangdao.com第十八天_JavaScript 文档对象模型 DOM
文档对象模型 DOM DOM 是 JavaScript 操作网页的接口, 全称为“文档对象模型”(Document Object Model). 作用是将网页转为一个 JavaScript 对象,从而 ...
- Bitbox : a small open, DIY 32 bit VGA console
Bitbox : a small open, DIY 32 bit VGA console Hi all, I've been developing a simple DIY console and ...
- VGA Output from STM32F4 Discovery board
VGA Output from STM32F4 Discovery board I love the web! There are so many cool projects out there, a ...
- STM32F4 External interrupts
STM32F4 External interrupts Each STM32F4 device has 23 external interrupt or event sources. They are ...
- IAR EWARM 字体设置
如果只想简单的设置,可进行如下设置 Tools->IDE Options->Editor->Colors and Fonts->Editor Font->Font 但是这 ...
- c# SerialPort会出现“已关闭 Safe handle”的错误
c# SerialPort使用时出现“已关闭 Safe handle”的错误我在开发SerialPort程序时出现了一个问题,在一段特殊的扫描代码的时候会出现“已关闭 Safe handle”的错误, ...
- 【Go命令教程】3. go install
命令 go install 用于编译并安装指定的代码包及它们的依赖包.当指定的代码包的依赖包还没有被编译和安装时,该命令会先去处理依赖包.与 go build 命令一样,传给 go install 命 ...