相关题型

问题一(最大和子矩阵) : 有一个 m x n 的矩阵,矩阵的元素可正可负。请找出该矩阵的一个子矩阵(方块),使得其所有元素之和在所有子矩阵中最大。(问题来源:http://acm.pku.edu.cn/JudgeOnline/problem?id=1050)

问题二( 最大 0/1 方块) :有一个 m x n 的矩阵,元素为 0 或 1。一个子矩阵,如果它所有的元素都是 0, 或者都是 1,则称其为一个 0-聚类 或 1-聚类,统称聚类(Cluster)。请找出最大的聚类(元素最多的聚类)(面试题)

这两个问题,除了都是在矩阵上操作之外,似乎没有什么共同之处。其实不然。事实上,它们可以用同一个思路解决。该思路来源于下面的一个问题,具体地说,就是把前两个问题化归成多个问题三:

问题三(和最大的段) :有 n 个有正有负的数排成一行,求某个连续的段,使得其元素之和最大。(问题来源:某面试题。事实上,这也是一道经典题目,具体参考 http://en.wikipedia.org/wiki/Maximum_subarray_problem)

问题四(最大长方形) : 有一个有 n 个项的统计直方图,假定所有的直方条 (bar) 的宽度一样。在所有边与 x 轴 和 y 轴平行的长方形中,求该被该直方图包含的面积最大的长方形。(问题来源:面试经典题目)

参考

分析:动态规划,从左上角开始,如果当前位置为1,那么到当前位置包含的最大正方形边长为左/左上/上的值中的最小值加一,因为边长是由短板控制的。
最大子矩阵和问题可以类比于最大字段和问题,从一维变成二维,dp思路,在输入的时候做一个处理,让a[i,j]变为存放前i行j列的和,降低复杂度。状态转移方程为sum[k+1]=sum[k]<0?0:sum[k]+a[i,j];表示第k行i到j的和。因为a[i,j]为存放前i行j列的和,所以a[i,j]=a[k,j]-a[k,i-1];
// Program to find maximum sum subarray in a given 2D array
#include <stdio.h>
#include <string.h>
#include <limits.h>
#define ROW 4
#define COL 5 // Implementation of Kadane's algorithm for 1D array. The function
// returns the maximum sum and stores starting and ending indexes of the
// maximum sum subarray at addresses pointed by start and finish pointers
// respectively.
int kadane(int* arr, int* start, int* finish, int n)
{
// initialize sum, maxSum and
int sum = 0, maxSum = INT_MIN, i; // Just some initial value to check for all negative values case
*finish = -1; // local variable
int local_start = 0; for (i = 0; i < n; ++i)
{
sum += arr[i];
if (sum < 0)
{
sum = 0;
local_start = i+1;
}
else if (sum > maxSum)
{
maxSum = sum;
*start = local_start;
*finish = i;
}
} // There is at-least one non-negative number
if (*finish != -1)
return maxSum; // Special Case: When all numbers in arr[] are negative
maxSum = arr[0];
*start = *finish = 0; // Find the maximum element in array
for (i = 1; i < n; i++)
{
if (arr[i] > maxSum)
{
maxSum = arr[i];
*start = *finish = i;
}
}
return maxSum;
} // The main function that finds maximum sum rectangle in M[][]
void findMaxSum(int M[][COL])
{
// Variables to store the final output
int maxSum = INT_MIN, finalLeft, finalRight, finalTop, finalBottom; int left, right, i;
int temp[ROW], sum, start, finish; // Set the left column
for (left = 0; left < COL; ++left)
{
// Initialize all elements of temp as 0
memset(temp, 0, sizeof(temp)); // Set the right column for the left column set by outer loop
for (right = left; right < COL; ++right)
{
// Calculate sum between current left and right for every row 'i'
for (i = 0; i < ROW; ++i)
temp[i] += M[i][right]; // Find the maximum sum subarray in temp[]. The kadane()
// function also sets values of start and finish. So 'sum' is
// sum of rectangle between (start, left) and (finish, right)
// which is the maximum sum with boundary columns strictly as
// left and right.
sum = kadane(temp, &start, &finish, ROW); // Compare sum with maximum sum so far. If sum is more, then
// update maxSum and other output values
if (sum > maxSum)
{
maxSum = sum;
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
}
}
} // Print final values
printf("(Top, Left) (%d, %d)\n", finalTop, finalLeft);
printf("(Bottom, Right) (%d, %d)\n", finalBottom, finalRight);
printf("Max sum is: %d\n", maxSum);
} // Driver program to test above functions
int main()
{
int M[ROW][COL] = {{1, 2, -1, -4, -20},
{-8, -3, 4, 2, 1},
{3, 8, 10, 1, 3},
{-4, -1, 1, 7, -6}
}; findMaxSum(M); return 0;
}

Maximum Submatrix & Largest Rectangle的更多相关文章

  1. [POJ2559&POJ3494] Largest Rectangle in a Histogram&Largest Submatrix of All 1’s 「单调栈」

    Largest Rectangle in a Histogram http://poj.org/problem?id=2559 题意:给出若干宽度相同的矩形的高度(条形统计图),求最大子矩形面积 解题 ...

  2. LeetCode之“动态规划”:Maximal Square && Largest Rectangle in Histogram && Maximal Rectangle

    1. Maximal Square 题目链接 题目要求: Given a 2D binary matrix filled with 0's and 1's, find the largest squa ...

  3. LeetCode解题报告—— Minimum Window Substring && Largest Rectangle in Histogram

    1. Minimum Window Substring Given a string S and a string T, find the minimum window in S which will ...

  4. [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  5. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  6. LeetCode 笔记系列 17 Largest Rectangle in Histogram

    题目: Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar he ...

  7. LeetCode: Largest Rectangle in Histogram(直方图最大面积)

    http://blog.csdn.net/abcbc/article/details/8943485 具体的题目描述为: Given n non-negative integers represent ...

  8. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  9. Largest Rectangle in Histogram

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

随机推荐

  1. C# Socket异步实现消息发送--附带源码

    前言 看了一百遍,不如动手写一遍. Socket这块使用不是特别熟悉,之前实现是公司有对应源码改改能用. 但是不理解实现的过程和步骤,然后最近有时间自己写个demo实现看看,熟悉熟悉Socket. 网 ...

  2. Web大前端面试题-Day4

    1. 如何实现瀑布流? 瀑布流布局的原理:1) 瀑布流布局要求要进行布置的元素等宽,   然后计算元素的宽度,   与浏览器宽度之比,得到需要布置的列数;2) 创建一个数组,长度为列数,   里面的值 ...

  3. faker php测试数据库生成2

    因内容太长,被csdn截断了,只好把另外的内容写到这里. //Biased // 在10到20之间得到一个随机数字,有更大的几率接近20 echo $faker->biasedNumberBet ...

  4. BZOJ.5312.冒险(线段树)

    题目链接 \(Description\) 维护一个序列,支持区间and/or一个数.区间查询最大值. \(Solution\) 维护区间最大值?好像没什么用,修改的时候和暴力差不多. 我们发现有时候区 ...

  5. Codeforces Round #515 (Div. 3)

    Codeforces Round #515 (Div. 3) #include<bits/stdc++.h> #include<iostream> #include<cs ...

  6. ant design Modal关闭时清除数据的解决方案

    背景:modal组件关闭时不清除数据,原来输入的数据还存在 解决方案: 1.modal的api:destroyOnClose 2.手动控制modal的销毁 this.state = { destroy ...

  7. Centos 安装Percona Toolkit工具集

    1.下载 下载地址:   https://www.percona.com/downloads/percona-toolkit/LATEST/ [root@bogon ~]# wget https:// ...

  8. @RequestParam @RequestBody @PathVariable 等参数绑定注解详解(转)

    引言: 接上一篇文章,对@RequestMapping进行地址映射讲解之后,该篇主要讲解request 数据到handler method 参数数据的绑定所用到的注解和什么情形下使用: 简介: han ...

  9. Linux进程管理工具 Supervisord 的安装 及 入门教程

    Supervisor是一个进程管理工具,官方的说法: 用途就是有一个进程需要每时每刻不断的跑,但是这个进程又有可能由于各种原因有可能中断.当进程中断的时候我希望能自动重新启动它,此时,我就需要使用到了 ...

  10. linux 内核升级2 转

    linux内核升级 一.Linux内核概览 Linux是一个一体化内核(monolithic kernel)系统. 设备驱动程序可以完全访问硬件. Linux内的设备驱动程序可以方便地以模块化(mod ...