https://vjudge.net/problem/UVA-10285

题意:

在一个R*C的整数矩阵上找一条高度严格递减的最长路。起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外。

思路:

DAG上的最长路问题。由于起点不固定,我们每个点都需要试一遍。

 #include<iostream>
#include<string>
#include<cstring>
#include<sstream>
#include<algorithm>
using namespace std; const int maxn = + ; int n, m;
char s[maxn];
int map[maxn][maxn];
int d[maxn][maxn]; int dx[] = { , , , - };
int dy[] = { , -, , }; int dp(int i,int j)
{
int& ans = d[i][j];
if (ans > ) return ans;
ans = ;
for (int k = ; k < ; k++)
{
int x = i + dx[k];
int y = j + dy[k];
if (x< || x>n || y< || y>m) continue;
if (map[x][y] < map[i][j])
ans = max(ans, dp(x,y) + );
}
return ans;
} int main()
{
//freopen("D:\\txt.txt", "r", stdin);
int T;
cin >> T;
while (T--)
{
memset(d, , sizeof(d));
cin >> s >> n >> m;
for (int i = ; i <= n;i++)
for (int j = ; j <= m; j++)
cin >> map[i][j]; int maxd = ;
for (int i = ; i <= n;i++)
for (int j = ; j <= m; j++)
{
maxd = max(maxd,dp(i, j));
}
cout << s << ": " << maxd << endl;
}
return ;
}

UVa 10285 最长的滑雪路径(DAG上的最长路)的更多相关文章

  1. uva103(最长递增序列,dag上的最长路)

    题目的意思是给定k个盒子,每个盒子的维度有n dimension 问最多有多少个盒子能够依次嵌套 但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2... ...

  2. NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

    本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...

  3. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  4. 题解 UVA10285 最长的滑雪路径 Longest Run on a Snowboard

    Solution 双倍经验 就是记搜嘛. 搞一个二维数组记录一下当前的最长滑雪路径,其他和普通 dfs 没什么两样. 向 \(4\) 个方向搜索,如果高度符合就 \(+1\) . 多测要注意数组初始化 ...

  5. Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】

    根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...

  6. UVA - 10285 Longest Run on a Snowboard(最长的滑雪路径)(dp---记忆化搜索)

    题意:在一个R*C(R, C<=100)的整数矩阵上找一条高度严格递减的最长路.起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外.矩阵中的数均为0~100. 分析:dp[x ...

  7. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  8. HDU 4109 Instrction Arrangement(DAG上的最长路)

    把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...

  9. POJ 1949 Chores(DAG上的最长路 , DP)

    题意: 给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行. 分析: 这题关键就是每项任务都会有先决条件, ...

随机推荐

  1. oj1500(Message Flood)字典树

    大意:输入几个字符串,然后再输入几个字符串,看第一次输入的字符串有多少没有在后面的字符串中出现(后输入的字符串不一定出现在之前的字符串中) #include <stdio.h> #incl ...

  2. openstack 部署笔记--基本环境准备

    基础信息 配置:centos7.3 8G内存 4核处理器  单网卡 控制节点IP:192.168.15.243 计算节点IP:192.168.15.238 openstack 版本:ocata 配置信 ...

  3. windows server r2 之如何设置共享文件夹访问不需要输入用户名和密码

    第一步: 打开guest账号.单击桌面“开始”按钮,找到“控制面板”并打开,选择“用户帐户”并单击就会弹出一个窗口,继续单击下方的“管理其他帐户”,然后选择“Guest”,点击“启用”. 第二步: 在 ...

  4. 基于comet服务器推送技术(web实时聊天)

    http://www.cnblogs.com/zengqinglei/archive/2013/03/31/2991189.html Comet 也称反向 Ajax 或服务器端推技术.其思想很简单:将 ...

  5. ps中的栅格化--引出--矢量图

    矢量图使用直线和曲线来描述图形,这些图形的元素是一些点.线.矩形.多边形.圆和弧线等等,它们都是通过数学公式计算获得的.例如一幅花的矢量图形实际上是由线段形成外框轮廓,由外框的颜色以及外框所封闭的颜色 ...

  6. Docker深入浅出2

    Docker系统架构 Docker使用客户端-服务端(c/s)架构模式,使用远程api来管理和创建Docker容器. docker容器通过Docker镜像来创建. 容器与镜像的关系类似于面向对象编程中 ...

  7. [How to] ROOT, Backup & Flash (MTKDroidTools, Spflashtool, CWM)

    这是一篇来自xda论坛的文章,写得很详细,很有用,以下是原文: Hi This is a guide to ROOT, backup and flash your MTK65xx or Other d ...

  8. OAuth 白话简明教程 1.简述

    转自:http://www.cftea.com/c/2016/11/6702.asp OAuth 白话简明教程 1.简述 OAuth 白话简明教程 2.授权码模式(Authorization Code ...

  9. 016-sed

    行处理:一次处理一行.正则选定文本 ----->>sed处理格式:一.命令行格式:sed [options] 'command' files(如果没有则是通过管道)1.options: - ...

  10. Zookeeper学习记录(二):使用以及配置

    zookeeper已经介绍了它的原理设计以及实现方式,我们接下来介绍zookeeper的使用方法以及简单配置. 下载 获取Zookeeper的发布包,从Apache下载映像中下载一个最新稳定版本. 单 ...