https://vjudge.net/problem/UVA-10285

题意:

在一个R*C的整数矩阵上找一条高度严格递减的最长路。起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外。

思路:

DAG上的最长路问题。由于起点不固定,我们每个点都需要试一遍。

 #include<iostream>
#include<string>
#include<cstring>
#include<sstream>
#include<algorithm>
using namespace std; const int maxn = + ; int n, m;
char s[maxn];
int map[maxn][maxn];
int d[maxn][maxn]; int dx[] = { , , , - };
int dy[] = { , -, , }; int dp(int i,int j)
{
int& ans = d[i][j];
if (ans > ) return ans;
ans = ;
for (int k = ; k < ; k++)
{
int x = i + dx[k];
int y = j + dy[k];
if (x< || x>n || y< || y>m) continue;
if (map[x][y] < map[i][j])
ans = max(ans, dp(x,y) + );
}
return ans;
} int main()
{
//freopen("D:\\txt.txt", "r", stdin);
int T;
cin >> T;
while (T--)
{
memset(d, , sizeof(d));
cin >> s >> n >> m;
for (int i = ; i <= n;i++)
for (int j = ; j <= m; j++)
cin >> map[i][j]; int maxd = ;
for (int i = ; i <= n;i++)
for (int j = ; j <= m; j++)
{
maxd = max(maxd,dp(i, j));
}
cout << s << ": " << maxd << endl;
}
return ;
}

UVa 10285 最长的滑雪路径(DAG上的最长路)的更多相关文章

  1. uva103(最长递增序列,dag上的最长路)

    题目的意思是给定k个盒子,每个盒子的维度有n dimension 问最多有多少个盒子能够依次嵌套 但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2... ...

  2. NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

    本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...

  3. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  4. 题解 UVA10285 最长的滑雪路径 Longest Run on a Snowboard

    Solution 双倍经验 就是记搜嘛. 搞一个二维数组记录一下当前的最长滑雪路径,其他和普通 dfs 没什么两样. 向 \(4\) 个方向搜索,如果高度符合就 \(+1\) . 多测要注意数组初始化 ...

  5. Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】

    根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...

  6. UVA - 10285 Longest Run on a Snowboard(最长的滑雪路径)(dp---记忆化搜索)

    题意:在一个R*C(R, C<=100)的整数矩阵上找一条高度严格递减的最长路.起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩阵外.矩阵中的数均为0~100. 分析:dp[x ...

  7. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  8. HDU 4109 Instrction Arrangement(DAG上的最长路)

    把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...

  9. POJ 1949 Chores(DAG上的最长路 , DP)

    题意: 给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行. 分析: 这题关键就是每项任务都会有先决条件, ...

随机推荐

  1. PAT 1028 List Sorting[排序][一般]

    1028 List Sorting (25)(25 分) Excel can sort records according to any column. Now you are supposed to ...

  2. [LintCode] 394. Coins in a Line_ Medium tag:Dynamic Programming_博弈

    Description There are n coins in a line. Two players take turns to take one or two coins from right ...

  3. 机器学习理论基础学习17---贝叶斯线性回归(Bayesian Linear Regression)

    本文顺序 一.回忆线性回归 线性回归用最小二乘法,转换为极大似然估计求解参数W,但这很容易导致过拟合,由此引入了带正则化的最小二乘法(可证明等价于最大后验概率) 二.什么是贝叶斯回归? 基于上面的讨论 ...

  4. STL学习笔记--特殊容器

    容器配接器 (1) stack 栈 后进先出(LIFO), 头文件#include<stack> template<class _Ty, class _Container = deq ...

  5. EXTJS 4.2.1.883 Summary 合计栏宽度bug

    EXTJS 4.2.1.883中改进了summary插件,使合计栏能够在grid最底部显示,但是列宽和表格对不上,解决方法: 找到以下样式 .x-docked-summary .x-grid-tabl ...

  6. 自动加载 autoload

    自动加载  是什么时候调用的 是实例化某个对象的时候,在当前脚本中没有找到对应类的时候 ,如果当前找到了就不会调用__autoload方法 例如:例子一,找到类 <?php function _ ...

  7. Servlet—作controller控制层

    servlet控制器的改造步骤: 1.编写servlet类,和访问路径 2.修改jsp请求路径 servlet参数配置---获取初始化参数 servlet参数配置---全局参数

  8. 3:2 OGNL 简介

    OGNL : (对象图导航语言) 从一个对象到另一个对象 OGNL来源于Xwork: OGNL的作用: OGNL在数据进出值栈的时候进行类型转换

  9. MFC六大核心机制之五、六:消息映射和命令传递

    作为C++程序员,我们总是希望自己程序的所有代码都是自己写出来的,如果使用了其他的一些库,也总是千方百计想弄清楚其中的类和函数的原理,否则就会感觉不踏实.所以,我们对于在进行MFC视窗程序设计时经常要 ...

  10. lnmp1.4 安装php fileinfo扩展 方法

    第一步:在lnmp1.4找到php安装的版本 使用命令 tar   -jxvf   php-7.1.7.tar.bz2 解压 第二步: 在解压的php-7.1.7文件夹里找到fileinfo文件夹,然 ...