javascript -- canvas绘制曲线
绘制曲线有几种思路:
1、通过quadraticCurveTo(controlX, controlY, endX, endY)方法来绘制二次曲线
2、通过bezierCurveTo(controlX1, controlY1, controlX2, controlY2, endX, endY)方法,来绘制贝塞尔曲线
3、通过画圆的方法arc(x, y, radius, startAngle, endAngle, antiClockwise)来取得某一段圆弧,作为要画出的曲线
1、二次曲线quadraticCurveTo
quadraticCurveTo(cpx,cpy,x,y)
二次曲线也称二次贝塞尔曲线或圆锥曲线或圆锥截线,是直圆锥面的两腔被一平面所截而得的曲线。当截面不通过锥面的顶点时,曲线可能是圆、椭圆、双曲线、抛物线。当截面通过锥面 的顶点时,曲线退缩成一点、一直线或二相交直线。在截面上的直角坐标系(x,y)之下,这些曲线的方程是x,y的二元二次方程
- 参数1:控制点x
- 参数2:控制到y
- 参数3:结束点x
- 参数4:结束点y
数学公式表示如下:
二次方贝兹曲线的路径由给定点P0、P1、P2的函数B(t)追踪:

代码实例:
<!DOCTYPE html>
<html>
<head>
<meta
charset="utf-8">
<title>canvas直线</title>
<meta
name="Keywords" content="">
<meta name="author"
content="@my_programmer">
<style type="text/css">
body,
h1{margin:0;}
canvas{margin:
20px;}
</style>
</head>
<body
onload="draw()">
<h1>二次贝塞尔曲线</h1>
<canvas id="canvas"
width=200 height=200 style="border: 1px solid
#ccc;"></canvas>
<script>
function draw() {
var
canvas=document.getElementById('canvas');
var
context=canvas.getContext('2d');
//绘制起始点、控制点、终点
context.beginPath(); context.moveTo(20,170);
context.lineTo(130,40); context.lineTo(180,150);
context.stroke();
//绘制2次贝塞尔曲线
context.beginPath();
context.moveTo(20,170); context.quadraticCurveTo(130,40,180,150);
context.strokeStyle = "red"; context.stroke(); }
</script>
</body>
</html>
代码效果:

2、贝塞尔曲线
bezierCurveTo(cp1x,cp1y,cp2x,cp2y,x,y)
- 参数1:控制点x1
- 参数2:控制点y1
- 参数3:控制点x2
- 参数4:控制点y2
- 参数5:结束点x
- 参数6:结束点y
贝塞尔曲线(Bézier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋,我们在绘图工具上看到的钢笔工具就是来做这种矢量曲线的。当然在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。在Flash4中还没有完整的曲线工具,而在Flash5里面已经提供出贝塞尔曲线工具。
和二次曲线类似,它的函数是:bezierCurveTo()。贝塞尔曲线和二次曲线不同的是,它有2个控制点。二次曲线是有一个无形的控制点在拉动曲线,而贝塞尔曲线就是2个控制点在拉动曲线。
数学公式表示如下:
P0、P1、P2、P3四个点在平面或在三维空间中定义了三次方贝兹曲线。曲线起始于P0走向P1,并从P2的方向来到P3。一般不会经过P1或P2;这两个点只是在那里提供方向资讯。P0和P1之间的间距,决定了曲线在转而趋进P3之前,走向P2方向的“长度有多长”。

代码实例:
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>canvas直线</title>
<meta name="Keywords" content="">
<meta name="Description" content="">
<style type="text/css">
body, h1{margin:0;}
canvas{margin: 20px; }
</style>
</head>
<body onload="draw()">
<h1>三次贝塞尔曲线</h1>
<canvas id="canvas" width=200 height=200 style="border: 1px solid #ccc;"></canvas>
<script>
function draw() {
var canvas=document.getElementById('canvas');
var context=canvas.getContext('2d');
//绘制起始点、控制点、终点
context.beginPath();
context.moveTo(25,175);
context.lineTo(60,80);
context.lineTo(150,30);
context.lineTo(170,150);
context.stroke();
//绘制3次贝塞尔曲线
context.beginPath();
context.moveTo(25,175);
context.bezierCurveTo(60,80,150,30,170,150);
context.strokeStyle = "red";
context.stroke();
}
</script>
</body>
</html>
代码效果图:

3、圆弧线
arc(x, y, radius, startAngle, endAngle, antiClockwise)
- 参数1:圆心x
- 参数2:圆心y
- 参数3:半径
- 参数4:开始弧度
- 参数5:结束弧度
- 参数6:是否为逆时针方向,默认false
所谓弧度就是一个圆周的一部分,可以用圆心(参数1、2)和圆的扇形半径(参数3)来表示。为了表示弧度的范围,必须定义弧度的起点(参数4)和终点(参数5),以及它的方向(参数6)。

示例一个简单的弧度:
<!DOCTYPE HTML>
<html>
<head>
<style>
#myCanvas
{
border: 1px solid #9C9898;
}
</style>
</head>
<body>
<canvas id="myCanvas" width="600" height="300"></canvas>
<script>
function PI(deg)
{
return deg/180*Math.PI;
}
var canvas = document.getElementById('myCanvas');
var context = canvas.getContext('2d');
var pi=Math.PI;
context.beginPath();
context.arc(200, 200, 100, PI(-90), PI(0), false);
context.lineWidth = 10;
context.strokeStyle = 'black';
context.stroke();
</script>
</body>
</html>
javascript -- canvas绘制曲线的更多相关文章
- canvas绘制曲线
canvas绘制曲线 方法 quadraticCurveTo(cp1x, cp1y, x, y) 只有一个控制点的贝塞尔曲线(其实就是控制点分别与起始点和结束点连线的公切线) bezierCurveT ...
- JavaScript+canvas 绘制多边形
效果图: <body> <canvas id="square" width="500"></canvas> <canv ...
- JavaScript+canvas 利用贝塞尔曲线绘制曲线
效果图: <body> <canvas id="test" width="800" height="300">< ...
- canvas绘制贝塞尔曲线
原文:canvas绘制贝塞尔曲线 1.绘制二次方贝塞尔曲线 quadraticCurveTo(cp1x,cp1y,x,y); 其中参数cp1x和cp1y是控制点的坐标,x和y是终点坐标 数学公式表示如 ...
- 怎样用JavaScript和HTML5 Canvas绘制图表
原文:https://code.tutsplus.com/zh-...原作:John Negoita翻译:Stypstive 在这篇教程中,我将展示用JavaScript和canvas作为手段,在饼状 ...
- HTML5 Canvas绘制转盘抽奖
新项目:完整的Canvas转盘抽奖代码 https://github.com/givebest/GB-canvas-turntable 演示 http://blog.givebest.cn/GB-ca ...
- Canvas绘制图形
1.Canvas绘制一个蓝色的矩形 <!DOCTYPE html> <html> <head lang="en"> <meta chars ...
- HTML5学习总结——canvas绘制象棋(canvas绘图)
一.HTML5学习总结——canvas绘制象棋 1.第一次:canvas绘制象棋(笨方法)示例代码: <!DOCTYPE html> <html> <head> & ...
- canvas贝塞尔曲线
贝塞尔曲线 Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线. 曲线定义:起始点.终止点.控制点.通过调整控制点,贝塞尔曲线的形状会发生变化. 1962年,法国数学家Pierr ...
随机推荐
- Kafka 协议实现中的内存优化【转】
Kafka 协议实现中的内存优化 Jusfr 原创,转载请注明来自博客园 Request 与 Response 的响应格式 Request 与 Response 都是以 长度+内容 形式描述, 见 ...
- Docker 构建网络服务后本机不能访问
Docker 构建网络服务后本机不能访问 起因 使用tornado构建了一个服务,测试都没有问题 使用docker构建镜像,使用docker run image_name启动服务 使用浏览器访问 12 ...
- C#如何删除数组中的一个元素
C#如何删除数组中的一个元素,剩余的元素组成新数组,数组名不变double[] arr = new double[n];需要删除的是第m+1个数据arr[m]求新数组arr.(新数组arr包含n-1个 ...
- 1. 感知机原理(Perceptron)
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- XXE漏洞初窥
前言: XXE Injection即XML External Entity Injection也就是XML外部实体注入攻击.漏洞是在对非安全的外部实体数据进⾏行处理时引发的安全问题. XML相关名词科 ...
- Android 面试知识集2
继续上一篇文章整理有关Android的基础知识,为面试做准备的可以看看哪些知识是遗漏了.资料都是网上整理来,纠正了一些错误,有部分解析加入个人理解!感谢分享相关知识的开发者.这些知识平常开发的过程中都 ...
- WPF定义样式文件的方式
场景:一个页面中有两类按钮,分别为样式A和样式B,但是WPF中不能像Web一样定义多个样式 样式定义方法: 1. 一个一个写内联样式 2. 定义样式<style TargetType=" ...
- iis7.5 发布mvc出错的解决办法
发布mvc,配置iis7.5时,遇到这个错误. xxxx'System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b ...
- mybatis example 使用AND 和OR 联合查询
mybatis example 使用AND 和OR 联合查询 ViewPsmsgconsultExample example=new ViewPsmsgconsultExample(); ViewPs ...
- freemarker XMLGregorianCalendar 转日期
${m.createdate.toGregorianCalendar().getTime()?string("yyyy-MM-dd")} createdate为XMLGregori ...