转自:http://www.open-open.com/lib/view/open1453097241308.html

在MapReduce中,一个YARN  应用被称作一个job, MapReduce 框架提供的应用,master的一个实现被称作MRAppMaster

MapReduce Job的时间线

MapReduce Job  运行的时间线:

  • Map Phase:若干 Map Tasks 被执行
  • Reduce Phase: 若干Reduce Tasks 被执行

reduce可能会在map阶段结束之前开始执行,因此上面显示的有重叠的地方。

Map Phase

现在我们集中考察map相,一个关键的问题是一个应用需要多少map任务去运行现在的这个job

用户给了我们什么?

我们退回到之前的一步,当一个用户提交一个应用的时候,若干信息被提供给了YARN ,分别是:

  • 一个配置:这可以是一部分的,因为一些参数不需要用户特别指定,可以有自己的默认值。
  • 一个jar文件,含有一个map,一个combiner,一个reduce
  • 一个输入和输出信息 输入目录 是不是在hdfs上,有多少文件呢?输出的时候,我们存储在哪里

The number of files inside the input directory is used for deciding the number of Map Tasks of a job.
那么,输入的目录中文件的数量决定多少个map会被运行起来

多少个map任务?

应用针对每一个分片运行一个map,一般而言,对于每一个输入的文件会有一个map split。如果输入文件太大,超过了hdfs块的大小(64M)那么对于同一个输入文件我们会有多余2个的map运行起来。下面是FileInputFormat class 的getSplits()的伪代码: 

num_splits = 0
for each input file f:
remaining = f.length
while remaining / split_size > split_slope:
num_splits += 1
remaining -= split_size

where:

split_slope = 1.1 分割斜率
split_size =~ dfs.blocksize 分割大小约等于hdfs块大小

在mapreduce2.0以上版本mapreduce.job.maps 属性会被忽略

MapTask Launch
启动MapTask

mapreduce应用会向资源管理器请求这个job需要的容器,一个maptask容器请求每一个maptask。一个容器对每一个maptask的请求会尝试利用map分片的本地性,应用会请求一下数据:

  • 请求map split 和container在同一个节点管理器的container
  • 如果没有,请求一个map split 和container在同一个机架上的节点管理器上的container
  • 否则请求任意节点管理器上的container

这只是一小部分资源任务。资源任务器在资源任务器既定目标和指定目标冲突的时候,可以忽略本地性。当一个容器被分配一个任务,map就马上启动了。

Map阶段:一个执行阶段的例子

map 相的一个简要图:

  • 有两个节点管理器:每一个2GB的内存,每一个map需要1GB我们可以并行运行两个容器。这是最好的情况,而资源任务器的决策可能会有所不同
  • 集群没有其他的YARN任务运行
  • 我们的job有8个map分片,也就是在输入文件夹中有7个文件,只有一个是大于hdfs块大小的,需要被拆分为两个文件。

map任务的执行时间线

现在我们可以聚焦单个的map task:这是单个map的执行时间线:

  • 初始相:我们设置map任务
  • 执行相:map分片里面的每一个键值对进行map()函数运算
  • 溢写相:map的输出保存在环形内存缓冲区,当缓冲区满80%(一般80%),启动溢写相,将缓冲的数据写出到磁盘。
  • 洗牌相:在溢写相的结尾,我们合并多有的输出,并且打包他们以便进行reduce相处理。

map任务:初始化

在初始化阶段,我们:

 
  1. 创建一个上下文对象(context )(TaskAttemptContext)
  2. 创建用户map.class实例
  3. 设置输入
  4. 设置输出
  5. 创建mapper的上下文(MapContext.classMapper.Context.class)
  6. 初始化输入也就是:
  7. 创建 SplitLineReader.class 分片行阅读器
  8. 创建HdfsDataInputStream.class hdfs数据输入流

Map任务:执行阶段

执行阶段通过 Mapper class.的run()方法:

用户可以重写这个方法,但是默认的时候通常会调用setup而启动这个程序。这个函数默认并不做什么有用的 事情,但是可以被用户覆盖重写以便于设置任务(例如初始化类的变量),当设置完成之后,分片的每一个键值对会激发map()方法。因此map()接收到一个键,一个值,以及一个上下文context。使用这个上下文对象,一个map就会存储其输出到缓存中。

请注意,map分片是一个快一个块截取的(例如64kb),每一个快分割成为若干键值对的数据( SplitLineReader.class干的好事),这是在Mapper.Context.nextKeyValue内部完成的。当map分片被全部处理之后,run()会调用clean()方法。默认的,没有什么会被执行,除非用户重写覆盖他。

map任务:溢写阶段

正如我们在执行阶段看到的一样,map会使用Mapper.Context.write()将map函数的输出溢写到内存中的环形缓冲区 (MapTask.MapOutputBuffer)。缓冲区的大小是固定的,通过mapreduce.task.io.sort.mb (default: 100MB)指定。
任何时候当这个缓冲区将要充满的时候(mapreduce.map. sort.spill.percent: 默认80% ),溢写将会被执行(这是一个并行过程,使用的是单独的线程,缓冲池还可以继续被写入)。如果溢写线程太慢,而缓冲区又忙了的话,map()就会暂停执行而等待。
溢写线程执行下面的动作:
  1. 创建一个溢写记录SpillRecord 和一个FSOutputStream 文件输出流(本地文件系统)
  2. 内存内排序缓冲中的块:输出的数据会使用快排算法按照partitionIdx, key排序
  3. 排序之后的输出会分割成为分区:每一个分区对应一个reduce
  4. 分区序列化写到本地文件

来自: http://blog.csdn.net//mrcharles/article/details/50465626

MapReduce 图解流程超详细解答(1)-【map阶段】的更多相关文章

  1. MapReduce 图解流程超详细解答(2)-【map阶段】

    接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mappe ...

  2. CF468C Hack it! 超详细解答

    CF468C Hack it! 超详细解答 构造+数学推导 原文极简体验 CF468C Hack it! 题目简化: 令\(f(x)\)表示\(x\)在十进制下各位数字之和 给定一整数\(a\)构造\ ...

  3. MapReduce 图解流程

    Anatomy of a MapReduce Job In MapReduce, a YARN application is called a Job. The implementation of t ...

  4. JDK的下载及安装教程图解(超详细哦~)

    一.本人电脑系统介绍及JDK下载途径 1.先说明一下我的电脑为win10系统,64位操作系统~ 2.我选择下载的JDK版本为1.8版本.给大家来两个下载渠道,方便大家的下载~ JDK官网:https: ...

  5. MapReduce与Yarn 的详细工作流程分析

    MapReduce详细工作流程之Map阶段 如上图所示 首先有一个200M的待处理文件 切片:在客户端提交之前,根据参数配置,进行任务规划,将文件按128M每块进行切片 提交:提交可以提交到本地工作环 ...

  6. [转]超详细图解:自己架设NuGet服务器

    本文转自:http://diaosbook.com/Post/2012/12/15/setup-private-nuget-server 超详细图解:自己架设NuGet服务器 汪宇杰          ...

  7. SVN入门图解教程(超详细)

    SVN入门图解教程(超详细) 一.总结 一句话总结: 二.SVN入门教程 1. 什么是SVN SVN全名Subversion,即版本控制系统.SVN与CVS一样,是一个跨平台的软件,支持大多数常见的操 ...

  8. 超详细SQL SERVER 2016跨网段和局域网发布订阅配置图解和常见问题

    原文:超详细SQL SERVER 2016跨网段和局域网发布订阅配置图解和常见问题 转载标明出处:http://blog.csdn.net/u012861467 前方高能,要有点耐心,图片较多,注意在 ...

  9. Linux服务器上迁移项目路径,修改nginx配置,迁移及备份MongoDB数据库流程 (超详细)!!!

    缘由:客户服务器项目路径不是很合理,导致Jenkins自动部署时还需要添加路径后再更新部署,所以需要把项目路径统一和规范化. 迁移项目路径,保证路径合规,同时做好备份和迁移.迁移后先安装好依赖. 项目 ...

随机推荐

  1. 设置 debug 版本签名与生产版本一致

    debug 版本使用生产版本的签名 在开发过程中,app 直接跑到手机上,用的签名文件是 Android Studio 默认的自动生成的一个签名,与生产版本的 app 签名是不一样的.当接入华为推送的 ...

  2. Android TextView 支持的HTML标签

    * <a href="...">    * <b>    * <big>    * <blockquote>    * <br ...

  3. Ultraedit使用小技巧

    4. 编辑文件如何加入时间戳 ?F7 快捷键即可.你试试看? 5. 为何拷贝(Copy)/粘贴(Paste)功能不能用了?不怕大家笑话,我有几次使用 UltraEdit的过程中发现拷贝与粘贴的内容是不 ...

  4. 一分钟上手, 让 Golang 操作数据库成为一种享受

    gorose, 最风骚的 go orm, 拥有链式操作, 开箱即用, 一分钟上手等八大风骚, 让 golang 操作数据库成为一种享受, 妈妈再也看不到我处理数据的痛苦了, 下面就来为大家一一讲解 g ...

  5. Debugging the Java HotSpot VM

    Open Heart Surgery: Analyzing and Debugging the Java HotSpot VM at the OS Level https://www.youtube. ...

  6. make -C M=

    http://blog.sina.com.cn/s/blog_89fa41ef0100trjr.html Makefile:PWD = $(shell pwd)KERNEL_SRC = /usr/sr ...

  7. 【转】Android的root原理

    转自知乎:https://www.zhihu.com/question/21074979 @Kevin @张炬 作者:Kevin链接:https://www.zhihu.com/question/21 ...

  8. Zabbix之Python脚本端口自动发现

    Zabbix监控服务端口,可以手动添加配置,但是如果一个服务器上需要监控的端口数较多,那么利用Zabbix自动发现,比较高效,下面是自动发现port的Python脚本. #!/usr/bin/pyth ...

  9. C#学习笔记(32)——委托改变窗体颜色

    说明(2017-11-23 22:17:34): 1. 蒋坤的作业,点击窗体1里面的按钮,出现窗体2:点击窗体2里的按钮,窗体1改变背景色. 2. 做完窗体传值后,这个作业就很简单了. 代码: For ...

  10. eclipse mars 4.5.1 自定义工具栏

    window>>perspective>>Customize Perspective