DBoW2 词袋模型笔记
DBoW算法用于解决Place Recognition问题,ORB-SLAM,VINS-Mono等SLAM系统中的闭环检测模块均采用了该算法。来源于西班牙的Juan D. Tardos课题组。
主要是基于词袋模型(BoW)https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision。在10000张train image图像数据库中找到query image的匹配图像耗时<39ms,并有较高的召回率和较低的false positive。
理解词袋模型最重要的是要明白什么叫特征向量?什么叫一个视觉单词?又是什么叫词袋向量?
特征向量 - 单个视觉特征描述子
视觉单词 - 词典中的聚类中心,带有权重的单个视觉特征描述子
词袋向量 - 一张图片用词袋中每个单词是否出现(+ 出现的次数 + TF-DF)组合而成的向量(体现多个视觉特征描述子)
没看懂?请看下面
一. 主要步骤:
构建字典(Vocabulary):将图像数据库转换为索引图(k叉树)
template<class TDescriptor, class F>
class TemplatedDatabase
{
...
};
近似最近邻(ANN)搜索:将一张图片中特征的描述子通过在k叉树种搜索转换为视觉单词(visual word),多个视觉单词组成词袋向量(BoW Vector)
template<class TDescriptor, class F>
class TemplatedVocabulary
{
...
};
二. 具体算法:
1. 离线步骤 - 构建字典(聚类问题,也称为无监督分类):
- 主要采用K-means算法,将用于训练的图像数据库中的视觉特征(DBoW3中支持ORB和BRIEF两种二进制描述子)归入k个簇(cluster)中,每一个簇通过其质心(centroid)来描述,聚类的质量通常可以用同一个簇的误差平方和(Sum of Squared Error,SSE)来表示,SSE越小表示同一个簇的数据点越接近于其质心,聚类效果也越好。这里的“接近”是使用距离度量方法来实现的,不同的距离度量方法也会对聚类效果造成影响(后面会提到)。K-means优点是容易实现,缺点是在大规模数据集上收敛较慢,并且可能收敛到局部最小,造成该簇没有代表性。对于描述子这种高维空间的大规模聚类,粗暴使用K-means会有问题。因此会使用其变种Hierarchical K-means或者K-means++。
将训练图像数据库中所有N个描述子分散在一个k分支,d深度的k叉树的叶子节点上,如下图,分支数为3,深度为Lw,这样一个树结构有叶子结点3Lw个。可以根据场景大小,需要达到的效果修改k和d的数值。这样query image进来检索时,可以通过对数时间的复杂度(d次 = logk N)找到其对应的聚类中心,而不是使用O(n)的时间复杂度的暴力检索。
然后,为了提高检索时的效率、成功率以及准确率,还采用了下述算法
- 倒排索引(Inverse Index)
- 正排索引(Direct Index)
- TF-IDF(Term Frequency - Inverse Document Frequency)
2. 在线步骤 - 近似最近邻检索(ANN Retrieval)
由于ORB和BRIEF描述子均为二进制,因此距离度量采用汉明距离(二进制异或计算)。query image的描述子通过在字典的树上检索(找到最近邻的叶子节点)视觉单词,组成一个词袋向量(BoW vector),然后进行词袋向量之间的相似度计算,得到可能匹配的ranking images。最后还需要利用几何验证等方法选出正确(只是概率最大。。。)的那张图片。
DBoW2 词袋模型笔记的更多相关文章
- R+NLP︱text2vec包——BOW词袋模型做监督式情感标注案例(二,情感标注)
要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec ...
- 计算机视觉中的词袋模型(Bow,Bag-of-words)
计算机视觉中的词袋模型(Bow,Bag-of-words) Bag-of-words 读 'xw20084898的专栏'的blogBag-of-words model in computer visi ...
- 文本离散表示(一):词袋模型(bag of words)
一.文本表示 文本表示的意思是把字词处理成向量或矩阵,以便计算机能进行处理.文本表示是自然语言处理的开始环节. 文本表示按照细粒度划分,一般可分为字级别.词语级别和句子级别的文本表示.字级别(char ...
- 机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)
假设有一段文本:"I have a cat, his name is Huzihu. Huzihu is really cute and friendly. We are good frie ...
- 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...
- NLP入门(一)词袋模型及句子相似度
本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代. 本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosi ...
- NLP基础——词集模型(SOW)和词袋模型(BOW)
(1)词集模型(Set Of Words): 单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个. (2)词袋模型(Bag Of Words): 如果一个单词在文档中出现不止一 ...
- 开源词袋模型DBow3原理&源码(一)整体结构
前人摘树,后人乘凉. 源码在github有CMakeLists,代码下下来可以直接编译. 泡泡机器人有个很详细的分析,结合浅谈回环检测中的词袋模型,配合高翔的回环检测应用,基本上就可以串起来了. tf ...
- 机器学习入门-文本数据-构造Tf-idf词袋模型(词频和逆文档频率) 1.TfidfVectorizer(构造tf-idf词袋模型)
TF-idf模型:TF表示的是词频:即这个词在一篇文档中出现的频率 idf表示的是逆文档频率, 即log(文档的个数/1+出现该词的文档个数) 可以看出出现该词的文档个数越小,表示这个词越稀有,在这 ...
随机推荐
- JavaScript的DOM_获取和操作层次节点
一.层次节点的概述 节点的层次结构可以划分为:父节点与子节点.兄弟节点这两种.当我们获取其中一个元素节点的时候,就可以使用层次节点属性来获取它相关层次的节点. 二.childNodes 属性 chil ...
- Libevent源码学习笔记一:event2/event.h
一.libevent标准使用方法: 每个程序使用Libevent必须include <event2/event.h> 头文件,并 传给 -levent 链接器.如果只是想使用主要的eve ...
- 快速了解jquery
jQuery的基本设计思想和主要用法,就是"选择某个网页元素,然后对其进行某种操作".这是它区别于其他Javascript库的根本特点. 所以jquery的基础语法是: $(sel ...
- Yii2 配置发送邮件
'components' => [ 'mailer' => [ 'class' => 'yii\swiftmailer\Mailer', 'viewPath' => '@com ...
- 微信小程序获取手机信息
wx.getSystemInfo({ success: function (res) { console.log(res.model)//手机型号 console.log(res.pixelRatio ...
- css左固定右自适应常用方法
下面是几种方法的公用部分(右自适应也是一样的,换一下方向) html: <div class="demo"> <div class="sidebar&q ...
- UICollectionView的水平流水布局自定义layout
最近做合创共美的商城项目,遇到发货地址的不配送地区,是做一个弹出框,弹出框的布局是根据地名字数长短不齐的标签. 本来也可以用tableview来做的.只不过多建几个tableviewcell就可以了. ...
- 通过 openURL 方法跳转至设置 - iOS
iOS 10 以下系统版本可以通过 openURL 的方式跳转至指定的设置界面,code 如下: NSURL *url = [NSURL URLWithString:@"prefs:root ...
- vue-router笔记
1.vue-router 安装 在安装webpack模块时就安装了 eg: vue init webpack demo (安装webpack模块并取名为demo) 在安装模块时没有安装的话 ...
- c++11线程创建的三种方法
一.用一个初始函数创建一个线程 直接看代码:注意c++在运行一个可执行程序的时候(创建了一个进程),会自动的创建一个主线程,这个主线程和进程同生共死,主线程结束,进程也就结束了. #include & ...