显然是分数规划...主要是不会求分数的形式,看了题解发现自己好傻逼QAQ

  还是二分L值算出d[]降序选K个,顺便记录选择时候的p之和与w之和就可以输出分数形式了...

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{double sum;int pos;}d[maxn];
int n,K,ansx,ansy,x,y;
int p[maxn],w[maxn];
double mid;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
bool cmp(poi a,poi b){return a.sum-b.sum>1e-;}
bool check()
{
for(int i=;i<=n;i++)d[i].sum=1.0*p[i]-1.0*mid*w[i],d[i].pos=i;
sort(d+,d++n,cmp);
double sum=0.0;x=y=;
for(int i=;i<=K;i++)
{
x+=p[d[i].pos];y+=w[d[i].pos];
sum+=d[i].sum;
}
if(sum>=)return ;
return ;
}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
int main()
{
read(n);read(K);
for(int i=;i<=n;i++)read(w[i]),read(p[i]);
double l=,r=;
while(r-l>1e-)
{
mid=(l+r)/;
if(check())l=mid,ansx=x,ansy=y;
else r=mid;
}
ll d=gcd(ansx,ansy);
printf("%lld/%lld",ansx/d,ansy/d);
return ;
}

51nod 1257 背包问题 V3(分数规划)的更多相关文章

  1. 1257 背包问题 V3——分数规划

    N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大. Input 第1 ...

  2. 51nod 1257 背包问题 V3

    1257 背包问题 V3 基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2.. ...

  3. 51nod 1257 背包问题 V3(这不是背包问题是二分)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 题解:不能按照单位价值贪心,不然连样例都过不了 要求的 ...

  4. 1257 背包问题 V3(二分)

    1257 背包问题 V3 3 秒 131,072 KB 80 分 5 级题 题意 : 从n个物品中选出k个,使单位体积价值最大 思路: 一开始正面想,试过很多种,排序什么的..总是结果不对,最后想到二 ...

  5. 51nod 1257 01分数规划/二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...

  6. 51nod1257 背包问题 V3

    分数规划经典.开始精度1e-3/1e-4都不行,1e-5就A了 #include<cstdio> #include<cstring> #include<cctype> ...

  7. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  8. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  9. 【BZOJ 1758】【WC 2010】重建计划 分数规划+点分治+单调队列

    一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的 ...

随机推荐

  1. 第三模块:面向对象&网络编程基础 第4章 FTP项目作业讲解

    01-FTP项目需求 02-FTP项目框架搭建 03-FTP项目用户认证 04--FTP项目制定标准定长消息头 05-FTP项目下载功能开发 06-FTP项目下载功能开发2 07-FTP项目ls文件列 ...

  2. Siki_Unity_2-10_数据结构与算法

    Unity 2-10 数据结构与算法 任务1-1:数据结构简介 数据结构:数据存储的结构,数据之间的关系 数据结构分类: 集合:同属于一个集合 线性结构:数据元素存在一对一的关系 树形结构:数据元素存 ...

  3. 【rich-text】 富文本组件说明

    [rich-text] 富文本组件可以显示HTML代码样式. 1)支持事件:tap.touchstart.touchmove.touchcancel.touchend和longtap 2)信任的HTM ...

  4. token接口的测法

    接口一般都有权限的校验,一般是需要登录后才可以调用 对于接口的认证,一般通过两种方式来实现1.校验用户请求中是否包含某项指定的cookie2.校验用户的请求的header中是否包含某项指定的字段(to ...

  5. Python3 标准库:os

    1.重命名 import os os.rename('test.txt','x.txt') #重命名文件或目录 import os os.renames('a/123.txt','a/b/h.txt' ...

  6. 在linux下PHP和Mysql环境搞事情

    研发部门同事开发了一个接口管理辅助工具Shepherd,要求搭建在内网环境中,遇到点小问题记一下. 将开发的文件上传只web目录下,更改数据库ip,可以正常打开 登陆用户信息,此时需要连接数据库来验证 ...

  7. 11.24Daily Scrum(4)

    人员 任务分配完成情况 明天任务分配 王皓南 实现网页上视频浏览的功能.研究相关的代码和功能.1007 实现视频浏览的功能 申开亮 实现网页上视频浏览的功能.研究相关的代码和功能.1008 实现视频浏 ...

  8. 团队Beta阶段事后分析

    团队Beta阶段事后分析 设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件要解决用户的休闲娱乐问题,为用户提供好玩的模拟经营类的游戏,游戏主题 ...

  9. Windows SDK 非模态对话框的消息处理

    在SDK中使用非模态对话框时的几个问题: 1.为什么要调用IsDialogMessage?? 2.非模态对话框与主窗口有什么区别? 3.如果不调用IsDialogMessage,消息能不能传递到对话框 ...

  10. DDB与DIB

    DB与DIB的区别是什么?觉得书上介绍的有点抽象.不容易理解.他们两者之间的区别的“物理意义” [“现实意义”]——姑且这么叫吧,呵呵!被这个问题困扰了很久,所以今天决定好好查资料总结一下,把它彻底搞 ...