题目链接

BZOJ3521

题解

容易想到用前缀和搞

如果我们令\(p\)为\(1\),\(j\)为\(-1\),记前缀和为\(s[i]\)

我们就是要找到一段区间\([l,r]\),使得

\[\forall i \in [l,r] \quad s[i] - s[l - 1] \ge 0
\]

\[\forall i \in [l - 1,r - 1] \quad s[r] - s[i] \ge 0
\]

所以说\(s[l - 1]\)是区间\([l - 1,r]\)的最小值,\(s[r]\)是区间\([l - 1,r]\)的最大值

问题转化为了:我们需要找到最小值在左端,最大值在右端的最长区间

按照寻找最优区间的套路,我们枚举左端点,可以利用单调栈求出左端点满足要求的区间

然后在这个区间内查找最大值的位置【如果多个相同则取最右】,来更新答案

为什么一定是最大值的位置最优?因为最大值右边的一定不符,最大值左边的一定比当前答案小

复杂度\(O(nlogn)\),线段树没太多操作,甚至不用修改,所以常数很小,可以放心过

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define ls (u << 1)
#define rs (u << 1 | 1)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int mx[maxn << 2],A[maxn];
inline void upd(int u){
mx[u] = A[mx[ls]] > A[mx[rs]] ? mx[ls] : mx[rs];
}
void build(int u,int l,int r){
if (l == r) mx[u] = l;
else {
int mid = l + r >> 1;
build(ls,l,mid);
build(rs,mid + 1,r);
upd(u);
}
}
int query(int u,int l,int r,int L,int R){
if (l >= L && r <= R) return mx[u];
int mid = l + r >> 1;
if (mid >= R) return query(ls,l,mid,L,R);
else if (mid < L) return query(rs,mid + 1,r,L,R);
else {
int t1 = query(ls,l,mid,L,R),t2 = query(rs,mid + 1,r,L,R);
return A[t1] > A[t2] ? t1 : t2;
}
}
int n,st[maxn],top,r[maxn];
int main(){
n = read(); char c = getchar();
while (!isalpha(c)) c = getchar();
REP(i,n){
A[i] = A[i - 1] + (c == 'p' ? 1 : -1);
c = getchar();
}
build(1,1,n);
st[top = 1] = n;
int ans = 0,x;
for (int i = n - 1; ~i; i--){
while (top && A[i] <= A[st[top]]) top--;
if (!top) r[i] = n;
else r[i] = st[top] - 1;
st[++top] = i;
if (i + 1 <= r[i]){
x = query(1,1,n,i + 1,r[i]);
ans = max(ans,x - i);
}
}
printf("%d\n",ans);
return 0;
}

BZOJ3521 [Poi2014]Salad Bar 【线段树 + 单调栈】的更多相关文章

  1. Codeforces 781E Andryusha and Nervous Barriers 线段树 单调栈

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF781E.html 题目传送门 - CF781E 题意 有一个矩形,宽为 w ,高为 h .一开始会有 w 个 ...

  2. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

  3. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  4. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  5. Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)

    Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...

  6. [Codeforces1132G]Greedy Subsequences——线段树+单调栈

    题目链接: Codeforces1132G 题目大意:给定一个序列$a$,定义它的最长贪心严格上升子序列为$b$满足若$a_{i}$在$b$中则$a_{i}$之后第一个比它大的也在$b$中.给出一个数 ...

  7. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  8. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  9. cdqz2017-test10-rehearsal(CDQ分治&可持久化线段树&单调栈)

    题意: 给出n个三元组 e[i]=(si,ti,wi) 第i个三元组的价值为 Σ w[j] ,j 满足以下4个条件: 1.j<i 2.tj<ti 3.sj<si 4.不存在j< ...

随机推荐

  1. 微信小程序—day04

    元素水平+垂直居中 昨天的用户页的用户头像,是根据已知的像素大小,设置固定的值,达到居中的效果. 今日切换机型进行适配,发现对不同尺寸大小的屏幕不匹配.所以对wxss进行修改,真正达到水平+垂直居中. ...

  2. 第一篇 HTML基础

    浏览网页,就是上网,上网的本质就是下载内容. 浏览器是个解释器,用来执行HTML.css.JS代码的. HTML,CSS, JavaScript 号称网络三剑客. 1. 浏览器发送一个域名给服务端 2 ...

  3. 前端开发工程师 - 01.页面制作 - 第1章.Photoshop切图

    第1章--Photoshop切图 工具.面板.视图 什么是切图? 1. 从设计稿(.psd)中切出网络素材,如按钮.图标.logo.背景图等 2. 编写代码,在代码中使用图片,生成静态页面 --给网页 ...

  4. (Python爬虫02) 制定爬虫的学习计划了

    公司清退是件很让人郁闷的事情,精,气,神 都会受到影响.焦虑的心态,涣散的眼神, 无所适从的若无其事,人周茶凉的快速交接,各种担忧....平静的面孔波涛汹涌的心.... 认识聊天中满满的套路...还有 ...

  5. 《Git学习指南》学习笔记(三)

    多次提交 提交一般分未两步:add和commit. add将修改存入到索引(index)或叫暂存区(staging area)中. status命令 status命令会出现三种可能的状态: chang ...

  6. 解决CentOS: Failed to start The Apache HTTP Server.

    使用systemctl status httpd.service命令查看服务状态,发现有报错 然后将此配置文件/etc/httpd/conf.d/wordpress.conf的内容全部清空,修改为: ...

  7. visionpro吧-百度贴吧

    Halcon,Visionpro视频教程,观看下载地址:http://www.211code.com

  8. LogisticRegression Algorithm——机器学习(西瓜书)读书笔记

    import numpy as np from sklearn.datasets import load_breast_cancer import sklearn.linear_model from ...

  9. Executor Framework

    Why? look at the following 2 pieces of code for implementing a simple web server based on socket, ca ...

  10. ARM架构中的程序执行与调用

    ARM架构中的程序执行与调用 1. 几个名词 ABI : 可执行文件必须遵守的规范,以在特定执行环境中运行: 单独产生的可重定址的文件必须遵守的规范,以用来链接和执行. EABI: 适用于嵌入式环境的 ...