题目描述

一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'是V的自己,E'是E中所有跟V'有关的边,则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

输入

第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤100000, M ≤1000000;对于100%的数据, X ≤10^8

输出

应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

样例输入

6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4

样例输出

3
3


题解

Tarjan+拓扑排序+dp

显然,如果原图是一个DAG,那么选择的就是一条链,答案就是最长链;

如果不是呢?Tarjan缩点,然后拓扑排序+dp求带权最长链即可。正确性显然。

需要注意的是缩完点后如果有重边需要只考虑一条的贡献,因为确定了点就确定了边的选择,只有一次转移的机会。

时间复杂度 $O(n+m)$

#include <queue>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#define N 100010
using namespace std;
queue<int> q;
vector<int> e[N] , v[N];
int p , deep[N] , low[N] , tot , ins[N] , sta[N] , top , bl[N] , si[N] , num , ind[N] , last[N];
struct data
{
int x , y;
data(int a = 0 , int b = 0) {x = a , y = b;}
data operator+(int a) {return data(x + a , y);}
data operator^(data a)
{
if(x > a.x) return *this;
else if(x < a.x) return a;
else return data(x , (y + a.y) % p);
}
}f[N];
void tarjan(int x)
{
vector<int>::iterator i;
deep[x] = low[x] = ++tot , ins[x] = 1 , sta[++top] = x;
for(i = e[x].begin() ; i != e[x].end() ; i ++ )
{
if(!deep[*i]) tarjan(*i) , low[x] = min(low[x] , low[*i]);
else if(ins[*i]) low[x] = min(low[x] , deep[*i]);
}
if(deep[x] == low[x])
{
int t;
num ++ ;
do
{
t = sta[top -- ] , ins[t] = 0;
bl[t] = num , si[num] ++ ;
}while(t != x);
}
}
void solve(int n)
{
vector<int>::iterator i;
data ans;
int x;
for(x = 1 ; x <= n ; x ++ )
for(i = e[x].begin() ; i != e[x].end() ; i ++ )
if(bl[x] != bl[*i])
v[bl[x]].push_back(bl[*i]) , ind[bl[*i]] ++ ;
for(x = 1 ; x <= num ; x ++ )
if(!ind[x])
f[x] = data(si[x] , 1) , q.push(x);
while(!q.empty())
{
x = q.front() , q.pop() , ans = ans ^ f[x];
for(i = v[x].begin() ; i != v[x].end() ; i ++ )
{
if(last[*i] != x) last[*i] = x , f[*i] = f[*i] ^ (f[x] + si[*i]);
ind[*i] -- ;
if(!ind[*i]) q.push(*i);
}
}
printf("%d\n%d\n" , ans.x , ans.y);
}
inline char nc()
{
static char buf[100000] , *p1 , *p2;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf , 1 , 100000 , stdin) , p1 == p2) ? EOF : *p1 ++ ;
}
inline int read()
{
int ret = 0; char ch = nc();
while(!isdigit(ch)) ch = nc();
while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = nc();
return ret;
}
int main()
{
int n = read() , m = read() , i , x , y;
p = read();
for(i = 1 ; i <= m ; i ++ ) x = read() , y = read() , e[x].push_back(y);
for(i = 1 ; i <= n ; i ++ )
if(!deep[i])
tarjan(i);
solve(n);
return 0;
}

【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp的更多相关文章

  1. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  2. bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  3. BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)

    发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...

  4. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  5. Luogu P2272 [ZJOI2007]最大半连通子图(Tarjan+dp)

    P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\) ...

  6. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  7. 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图

    思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...

  8. [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)

    传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...

  9. BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】

    题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...

随机推荐

  1. Java设计模式(21)——行为模式之备忘录模式(Memento)

    一.概述 概念 UML简图 角色 根据下图得到角色 备忘录角色(Memento).发起人角色(Originator).负责人角色(Caretaker) 二.实践 使用白箱实现,给出角色的代码: 发起人 ...

  2. QImage对一般图像的处理

    QImage对一般图像的处理 Qt中QImage类封装了对于一般图像像素级的操作,图像显示则使用QPixmap. 本文说说对一般图像(常见格式,图像不大)的处理,比如将彩色图像处理为灰度图像.首先要获 ...

  3. spring源码-国际化-3.5

    一.国际化在实际代码中是非常常见的一中方式.为了结合web做一下语言上面的切换,而达到展示的目的. 二.这里呢,主要是介绍spring中对于国际化做了哪些处理. 三.实现方式 1)xml配置 < ...

  4. 蓝牙入门知识-CC2541知识

    蓝牙是为了能够通信,想要通信就必须遵守一定的规则, Profile 就可以理解为相互约定的规则,因为每个协议栈demo 都会有一个Profile 与之对应, 我们这里的SimpleBLExxx 对应的 ...

  5. eclipse+tomcat配置远程debug调整

    由于开发环境与真实服务器环境存在差异,有时开发时明明正常的逻辑,部署之后就会出现各种各样的问题,通过日志邮不能明确定位到问题的时候,可以采用远程debug调试来定位问题.下面就介绍一下具体的配置步骤: ...

  6. Qt-第一个QML程序-3-自定义一个按钮

    项目基本信息前两个已经说了,这里直接放下运行截图, 对的,这里就是说上面的那个红色的按钮,这里需要了解Qml的动画和状态 这里先把整个按钮的代码写出来,一点一点写 Rectangle { id:clo ...

  7. 跟浩哥学自动化测试Selenium -- 浏览器的基本操作与元素定位(3)

    浏览器的基本操作与元素定位 通过上一章学习,我们已经学会了如何设置驱动路径,如何创建浏览器对象,如何打开一个网站,接下来我们要进行一些复杂的操作比如先打开百度首页,在打开博客园,网页后退,前进等等,甚 ...

  8. 域名、IP地址、URL关系

    域名是个文字形式记录的IP地址 IP地址是计算机在网络中的门牌号! URL是网页地址 例如1: http://zhidao.baidu.com/question/14674128.html 是URL ...

  9. 拓扑排序 (Ordering Tasks UVA - 10305)

    题目描述: 原题:https://vjudge.net/problem/UVA-10305 题目思路: 1.依旧是DFS 2.用邻接矩阵实现图 3.需要判断是否有环 AC代码 #include < ...

  10. metamask注记词

    leaf orbit poet zebra toy day put dinosaur review cool pluck throw(m) 一个钱包地址 里面有多个账号 菲苾代表了不同网络