BZOJ 1040 骑士(环套树DP)
如果m=n-1,显然这就是一个经典的树形dp。
现在是m=n,这是一个环套树森林,破掉这个环后,就成了一个树,那么这条破开的边连接的两个顶点不能同时选择。我们可以对这两个点进行两次树形DP根不选的情况。
那么答案就是每个森林的max()之和。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF (LL)<<
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next, flag;}edge[N<<];
int head[N], cnt=, node[N], res[], p;
bool vis[N];
LL dp[][N][]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;} void dfs(int x, int fa)
{
vis[x]=true;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
if (vis[v]==true) {
if (p==) res[]=x, res[]=v, p=, edge[i].flag=edge[i^].flag=;
continue;
}
dfs(v,x);
}
}
void dfs_dp(int x, int fa, int flag)
{
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa||edge[i].flag) continue;
dfs_dp(v,x,flag);
dp[flag][x][]+=max(dp[flag][v][],dp[flag][v][]);
dp[flag][x][]+=dp[flag][v][];
}
dp[flag][x][]+=node[x];
}
int main ()
{
int n, u, w;
LL ans=;
scanf("%d",&n);
FOR(i,,n) scanf("%d%d",&w,&u), add_edge(u,i), add_edge(i,u), node[i]=w;
FOR(i,,n) {
if (vis[i]) continue;
p=; dfs(i,);
dfs_dp(res[],,); dfs_dp(res[],,);
ans+=max(dp[][res[]][],dp[][res[]][]);
}
printf("%lld\n",ans);
return ;
}
BZOJ 1040 骑士(环套树DP)的更多相关文章
- 【BZOJ】1040: [ZJOI2008]骑士 环套树DP
[题意]给定n个人的ai和bi,表示第i个人能力值为ai且不能和bi同时选择,求能力值和最大的选择方案.n<=10^6. [算法]环套树DP(基环树) [题解]n个点n条边——基环森林(若干环套 ...
- 【距离GDKOI:44天&GDOI:107天】【BZOJ1040】[ZJOI2008] 骑士 (环套树DP)
其实已经准备退役了,但GDOI之前还是会继续学下去的!!当成兴趣在学,已经对竞赛失去信心了的样子,我还是回去跪跪文化课吧QAQ 第一道环套树DP...其实思想挺简单的,就把环拆开,分类处理.若拆成开的 ...
- BZOJ 1040 骑士 基环树 树形DP
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1040 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫 ...
- [BZOJ1040][ZJOI2008]骑士(环套树dp)
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5816 Solved: 2263[Submit][Status ...
- bzoj 1040 基向内环树dp
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk mak ...
- 【BZOJ】1040: [ZJOI2008]骑士(环套树dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1040 简直不能再神的题orz. 蒟蒻即使蒟蒻,完全不会. 一开始看到数据n<=1000000就 ...
- 【树形dp】Bzoj 1040骑士
Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火 ...
- BZOJ 1791 岛屿(环套树+单调队列DP)
题目实际上是求环套树森林中每个环套树的直径. 对于环套树的直径,可以先找到这个环套树上面的环.然后把环上的每一点都到达的外向树上的最远距离作为这个点的权值. 那么直径一定就是从环上的某个点开始,某个点 ...
- Codeforces 835F Roads in the Kingdom (环套树 + DP)
题目链接 Roads in the Kingdom 题意 给出一个环套树的结构,现在要删去这个结构中的一条边,满足所有点依然连通. 删边之后的这个结构是一棵树,求所有删边情况中树的直径的最小值. 显 ...
随机推荐
- SpaceVim 语言模块 lua
原文连接: https://spacevim.org/cn/layers/lang/lua/ 模块简介 启用模块 快捷键 交互式编程 运行当前脚本 模块简介 这一模块为在 SpaceVim 中进行 l ...
- QT Creator 转VS2017+QT工程
因为刚学QT 不熟悉其QT Creator 的开发环境,所以打算用VS2017来开发,因为要跨平台所以打算写出来的代码可以放在linux上编译. 这时就需要将VS2017的工程转换成QT Creato ...
- USACO16OPEN_248&&USACO16OPEN_262144_KEY
题目传送门 这道题比较水,设f[i][j]表示i~j区间合并的最大值. #include <cstdio> #define max(a,b) a>b?a:b using namesp ...
- 【公司动态添加行】前台穿一个json的字符串到后台,并解析
<!doctype html><html lang="en"> <head> <meta charset="UTF-8" ...
- python 函数定义顺序
#!/usr/bin/python # Hello World def order(): print("haha") print('Hello World!') order()
- jdbc 连接各种数据库
package com.fh.controller.ruitai.util; import java.sql.Connection; import java.sql.DriverManager; im ...
- 程序迭代时测试操作的要点(后端&前端)
今晚直播课内容简介,视频可点击链接免费听 <程序迭代时测试操作的要点(后端&前端)> ===== 1:迭代时后台涉及的操作有哪些?如何进行 a.更新war包:用于访问web\app ...
- C 数据类型 常量 变量
一 数据类型 1. 什么是数据 生活中时时刻刻都在跟数据打交道 比如体重数据 血压数据 股价数据等 在我们使用计算机的过程中 会接触到各种各样的数据 有文档数据 图片数据 视频数据 还有聊QQ时产生的 ...
- Python列表的深拷贝和浅拷贝
1. Python列表的拷贝 对于python里面如果想要进行列表的拷贝和复制,具体的操作语句如下: 1) 深拷贝: M=[A,b,a,c] N=M[:] 2) 浅拷贝: N=M 有人说可以直接将M赋 ...
- django 增删改查操作 数据库Mysql
下面介绍一下django增删改查操作: 1.view.py # -*- coding: utf-8 -*-from __future__ import unicode_literalsfrom dja ...