【luogu P1073 最优贸易】 题解
题目链接:https://www.luogu.org/problemnew/show/P1073
对于状态量相互影响的题目,分层图是个不错的想法。
考虑在题目中分为:
不交易:
直接从1到n出去,为0
交易:
先在某点买入,再从该点后所在路径上卖出。
买入卖出是两个操作,考虑可以分开在两张图上做,于是就有了分层图,共三张图。
我们把原图中的路径都设边权为0,表示在这条路上走对交易利润无影响,在第一张图上买入后,我们就走到下一张图,准备卖出操作。
设u—>v
所以若从u点买入,到下一条边的v,即v+n,边权为买入的花费,-val[u]。
这时我们再第二张图上的所走,就能保证是再走的路径是该点往后可以经过的路径。
这时我们再考虑转移卖出的情况。
此时已经在v+n—>w+n上
即若在v点卖出,往后可走到w点,所以是v+n到w+2n的一条边权为val[v]的路径。
图建好后,SPFA即可。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 500010;
int n, m, val[maxn], dis[maxn];
bool vis[maxn];
struct edge{
int from, to, next, len;
}e[maxn<<2];
int head[maxn], cnt;
queue<int> q;
void add(int u, int v, int w)
{
e[++cnt].from = u;
e[cnt].len = w;
e[cnt].next = head[u];
e[cnt].to = v;
head[u] = cnt;
}
void SPFA()
{
while(!q.empty())
{
int now = q.front(); q.pop();
vis[now] = 0;
for(int i = head[now]; i != -1; i = e[i].next)
{
if(dis[e[i].to] < dis[now] + e[i].len)
{
dis[e[i].to] = dis[now] + e[i].len;
if(!vis[e[i].to])
{
q.push(e[i].to);
vis[e[i].to] = 1;
}
}
}
}
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d",&n,&m);
for(int i = 1; i <= 3 * n + 1; i++)
dis[i] = -23333333;
for(int i = 1; i <= n; i++)
scanf("%d",&val[i]);
add(n, 3 * n + 1, 0);
add(3 * n, 3 * n + 1, 0);
for(int i = 1; i <= m; i++)
{
int u, v, w;
scanf("%d%d%d",&u,&v,&w);
if(w == 1)
{
add(u, v, 0);
add(u + n, v + n, 0);
add(u, v + n, -val[u]);
add(u + n * 2, v + n * 2, 0);
add(u + n, v + n * 2, val[u]);
}
else
{
add(u, v, 0);
add(u + n, v + n, 0);
add(u, v + n, -val[u]);
add(u + n * 2, v + n * 2, 0);
add(u + n, v + n * 2, val[u]);
add(v, u, 0);
add(v + n, u + n, 0);
add(v, u + n, -val[v]);
add(v + n * 2, u + n * 2, 0);
add(v + n, u + n * 2, val[v]);
}
}
q.push(1);
dis[1] = 0;
vis[1] = 1;
SPFA();
printf("%d\n",dis[3 * n + 1]);
return 0;
}
【luogu P1073 最优贸易】 题解的更多相关文章
- Luogu P1073 最优贸易(最短路)
P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...
- Luogu P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- Luogu P1073 最优贸易【最短路/建反图】 By cellur925
题目传送门 这么经典的题目,还是看了lyd的题解....唉难过. 一句话题意:在一张点有全都的图上找一条从1到n的路径,存在两个点p,q(p<q),使val[q]-val[p]最大. 给出的图是 ...
- [NOIp2009] luogu P1073 最优贸易
md 我发现跟你们聊天贼没意思. 题目描述 我觉得描述挺好,不改了吧. Solution 容易发现这是道 dfs + DP 的乱搞题. 设 f[x]f[x]f[x] 表示到 xxx 这个点的最优答案. ...
- 洛谷 P1073 最优贸易 题解
题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...
- P1073 最优贸易 建立分层图 + spfa
P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
- 洛谷——P1073 最优贸易
P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...
随机推荐
- 一:Maven知识整理
一:maven的好处 1.依赖管理:对jar包的统一管理 可以节省空间 2.项目一键构建: 编码 编译 测试(junit) 运行 打包 部署 一个 tomcat:run就能把项目运行起来 Maven能 ...
- https加解密过程
前前后后,看了许多次关于https加解密过程的相关文档资料,一直似懂非懂.这次,终于理解了,还画了个图,做个记录. 知识点 1.对称加密:双方用同一个密码加解密.如des,aes 2.非对称加密:双方 ...
- eclipse切换workspace后配置问题
正常情况下如果切换了eclipse的workspace后,需要重新配置eclipse,但是可以将原工作目录中的.metadata/.plugins/org.eclipse.core.runtime拷贝 ...
- Java 之变量和常量(2)
Java中的关键字: Java 语言中有一些具有特殊用途的词被称为关键字.关键字对 Java 的编译器有着特殊的意义,在程序中应用时一定要慎重哦!! Java 中常用关键字: 问:这么多,记不住啊.. ...
- 1 如何使用pb文件保存和恢复模型进行迁移学习(学习Tensorflow 实战google深度学习框架)
学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https:/ ...
- javascprit form表单提交前验证以及ajax返回json
1.今天要做一个手机验证码验证的功能.需求是前端页面点击发送 短信验证码,后台接收后通过ajax返回到前端,之后前端在提交时候进行验证.思路很简单,不过做的过程还是学到不少的东西. 1.ajax请求后 ...
- arcgis silverlight api Query接口
Query.text 是 根据发布图层的 Display Field 字段进行模糊查询的 Query.where 是输入查询语句的 如果要进行模糊查询where = F_AREA like'12312 ...
- django模板报错:Requested setting TEMPLATE_DEBUG, but settings are not configured. You must either define
转自:http://blog.csdn.net/xiaowanggedege/article/details/8651236 django模板报错: Requested setting TEMPLAT ...
- Netty入门3之----Decoder和Encoder
Netty强大的地方,是他能方便的实现自定义协议的网络传输.在上一篇文章中,通过使用Netty封装好的工具类,实现了简单的http服务器.在接下来的文章中,我们看看怎么使用他来搭建自定义协议的服务 ...
- 个体商户POS机遭遇禁刷 职业养卡人称自有对策
“套现猛于虎也”,这对于信用卡业而言无异于一大命门,信用卡套现金额的规模如同滚雪球般愈演愈烈.记者昨日采访银行业内了解到,虽然为防套现将根据规定关闭个体商户POS机刷信用卡的功能,但职业“养卡人”不以 ...