【luogu P1073 最优贸易】 题解
题目链接:https://www.luogu.org/problemnew/show/P1073
对于状态量相互影响的题目,分层图是个不错的想法。
考虑在题目中分为:
不交易:
直接从1到n出去,为0
交易:
先在某点买入,再从该点后所在路径上卖出。
买入卖出是两个操作,考虑可以分开在两张图上做,于是就有了分层图,共三张图。
我们把原图中的路径都设边权为0,表示在这条路上走对交易利润无影响,在第一张图上买入后,我们就走到下一张图,准备卖出操作。
设u—>v
所以若从u点买入,到下一条边的v,即v+n,边权为买入的花费,-val[u]。
这时我们再第二张图上的所走,就能保证是再走的路径是该点往后可以经过的路径。
这时我们再考虑转移卖出的情况。
此时已经在v+n—>w+n上
即若在v点卖出,往后可走到w点,所以是v+n到w+2n的一条边权为val[v]的路径。
图建好后,SPFA即可。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 500010;
int n, m, val[maxn], dis[maxn];
bool vis[maxn];
struct edge{
int from, to, next, len;
}e[maxn<<2];
int head[maxn], cnt;
queue<int> q;
void add(int u, int v, int w)
{
e[++cnt].from = u;
e[cnt].len = w;
e[cnt].next = head[u];
e[cnt].to = v;
head[u] = cnt;
}
void SPFA()
{
while(!q.empty())
{
int now = q.front(); q.pop();
vis[now] = 0;
for(int i = head[now]; i != -1; i = e[i].next)
{
if(dis[e[i].to] < dis[now] + e[i].len)
{
dis[e[i].to] = dis[now] + e[i].len;
if(!vis[e[i].to])
{
q.push(e[i].to);
vis[e[i].to] = 1;
}
}
}
}
}
int main()
{
memset(head, -1, sizeof(head));
scanf("%d%d",&n,&m);
for(int i = 1; i <= 3 * n + 1; i++)
dis[i] = -23333333;
for(int i = 1; i <= n; i++)
scanf("%d",&val[i]);
add(n, 3 * n + 1, 0);
add(3 * n, 3 * n + 1, 0);
for(int i = 1; i <= m; i++)
{
int u, v, w;
scanf("%d%d%d",&u,&v,&w);
if(w == 1)
{
add(u, v, 0);
add(u + n, v + n, 0);
add(u, v + n, -val[u]);
add(u + n * 2, v + n * 2, 0);
add(u + n, v + n * 2, val[u]);
}
else
{
add(u, v, 0);
add(u + n, v + n, 0);
add(u, v + n, -val[u]);
add(u + n * 2, v + n * 2, 0);
add(u + n, v + n * 2, val[u]);
add(v, u, 0);
add(v + n, u + n, 0);
add(v, u + n, -val[v]);
add(v + n * 2, u + n * 2, 0);
add(v + n, u + n * 2, val[v]);
}
}
q.push(1);
dis[1] = 0;
vis[1] = 1;
SPFA();
printf("%d\n",dis[3 * n + 1]);
return 0;
}
【luogu P1073 最优贸易】 题解的更多相关文章
- Luogu P1073 最优贸易(最短路)
P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...
- Luogu P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- Luogu P1073 最优贸易【最短路/建反图】 By cellur925
题目传送门 这么经典的题目,还是看了lyd的题解....唉难过. 一句话题意:在一张点有全都的图上找一条从1到n的路径,存在两个点p,q(p<q),使val[q]-val[p]最大. 给出的图是 ...
- [NOIp2009] luogu P1073 最优贸易
md 我发现跟你们聊天贼没意思. 题目描述 我觉得描述挺好,不改了吧. Solution 容易发现这是道 dfs + DP 的乱搞题. 设 f[x]f[x]f[x] 表示到 xxx 这个点的最优答案. ...
- 洛谷 P1073 最优贸易 题解
题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...
- P1073 最优贸易 建立分层图 + spfa
P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- 洛谷P1073 最优贸易==codevs1173 最优贸易
P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...
- 洛谷——P1073 最优贸易
P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...
随机推荐
- redis(4)事务
一.事务 一般来说,事务必须满足4个条件,也就是我们常说的ACID: 1)Atomicity 原子性:一个事务中的所有操作要么全部完成,要么全部不完成,不会结束在中间的某个环节.事务在执行过程中发生错 ...
- 使用 typeof 来检测对象是否undefined
需求 判断是否为undefined 解决 使用 typeof 来检测对象是否已定义: if (typeof Obj !== "undefined" && Obj ! ...
- JAVA_SE_Day02 String 的正则表达式
字符串支持正则表达式的方法一: boolean matches(String regex) 注意: 给定的正则表达式就算不指定边界符(^,$),也会全匹配验证 空字符串和null 空字符串是看不见,而 ...
- 多版本python如何切换
一.在命令行中 通过py -x 二.在py文件中 头部字段添加 #!python2 或 #!python3 即可调用相应版本解释器 命令行调用python:py helloworld.py
- jQuery filter() , end()
1. jquery filter(condition) : 过滤指定对象中符合条件的元素: 2. jquery end() : 回到原来的操作对象 3. example : <body& ...
- 洛谷P1024 一元三次方程求解(数学)
题意 题目链接 Sol 本来是一道好的公式题. 然后输出只要保留两位小数?? 直接上不就赢了嘛.. #include<bits/stdc++.h> #define LL long long ...
- 清楚苹果 iPai端按钮默认样式
input[type="button"], input[type="submit"], input[type="reset"] { -web ...
- tableview setData 设置数据(结构体对象)
定义设置的对象类型 Q_DECLARE_METATYPE(LISTITEMDATA *) 设置数据类型 LISTITEMDATA *ptask = &(const_cast<LISTIT ...
- Unable to create a constant value of type 'System.Object'. Only primitive types or enumeration types are supported in this context.
代码如下: var query = from s in db.LoginUserServices join ss in db.Services on s.ServiceType equals ss.C ...
- update_dctcp_alpha
/* + * Update dctcp alpha based on the ecn bit in the received packet. + * This procedure is called ...