【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式
Description
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N、{an}、以及B的取值范围,求出有多少B可以使等式存在非负整数解。
Input
输入的第一行包含3个正整数,分别表示N、BMin、BMax分别表示数列的长度、B的下界、B的上界。输入的第二行包含N个整数,即数列{an}的值。
Output
输出一个整数,表示有多少b可以使等式存在非负整数解。
Sample Input
2 5 10
3 5Sample Output
5HINT
对于100%的数据,N≤12,0≤ai≤5*10^5,1≤BMin≤BMax≤10^12。
Source
【分析】
看了好久题解,感觉好机智啊。。
题目可以理解成经典的背包问题。只是他问你的是[L,R]区间中有多少个容积是恰好可以装满的。
然后这个范围很大啊,传统的暴力当然是行不通的了。
考虑一个可以被拼出来的x,他里面可以包含ai也可以不包含ai。设x%ai=b(0<=b<ai)
那么其实x+ai都可以被拼出来,显然。
所以我们只要对于一个b,求出最小的可以拼出来的x,那么一直加ai也是可以的。
直接把不同的b算出来的答案加起来就好了。
要证明的话只要说明两个东西:
1、不重复性,对于不同的可以拼出的x1,x2,如果他们%ai不同,那就不会算重复。
如果他们%ai相同,也不会算重复【233我在搞笑?】
2、不遗漏性,对于可以拼出来的x1,有一个模对应的b,那么肯定会算到嘛= =【233
所以就这样搞笑的证明了??
【想出来的人思路真的很妙【我根本看不出是最短路啊ORZ。。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
#define LL long long
#define Maxm 7000100
#define Maxn 500010
#define INF 1000000000000LL int a[]; struct node
{
int x,y,next;
LL c;
}t[Maxm];int len=; // vector<int > e[Maxn],c[Maxn]; int first[Maxn]; void ins(int x,int y,LL c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} LL dis[Maxn];
bool inq[Maxn];
queue<int > q;
void spfa()
{
int st=;
while(!q.empty()) q.pop();
memset(inq,,sizeof(inq));
// memset(dis,63,sizeof(dis));
for(int i=;i<a[];i++) dis[i]=INF;
q.push(st);dis[st]=;inq[st]=;
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next)
{
int y=t[i].y;
// for(int i=0;i<e[x].size();i++)
// {
// int y=e[x][i];
if(dis[y]>dis[x]+t[i].c)
{
dis[y]=dis[x]+t[i].c;
// dis[y]=dis[x]+c[x][i];
while(!inq[y])
{
inq[y]=;
q.push(y);
}
}
}
inq[x]=;
q.pop();
}
} LL get_ans(LL x,LL y)
{
if(x<y) return ;
return (x-y)/a[]+;
} int main()
{
int n;
LL L,R;
scanf("%d%lld%lld",&n,&L,&R);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
sort(a+,a++n);
memset(first,,sizeof(first));
for(int i=;i<=n;i++)
for(int j=;j<a[];j++)
{
ins(j,(j+a[i])%a[],a[i]);
}
spfa();
LL ans=;
for(int i=;i<a[];i++)
ans+=get_ans(R,dis[i])-get_ans(L-,dis[i]);
printf("%lld\n",ans);
return ;
}
WA了很久竟然是spfa打错了。。。
2017-01-13 19:05:54
【BZOJ 2118】 2118: 墨墨的等式 (最短路)的更多相关文章
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- bzoj 2118: 墨墨的等式 spfa
题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2944 Solved: 1206[Submit][Status][Discu ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
随机推荐
- bzoj 2276: [Poi2011]Temperature——单调队列
Description 某国进行了连续n天的温度测量,测量存在误差,测量结果是第i天温度在[l_i,r_i]范围内. 求最长的连续的一段,满足该段内可能温度不降 第一行n 下面n行,每行l_i,r_i ...
- Little Mathematics Knowledge 数学小常识
The sum of arithmetic sequence The sum of geometric sequence A special formula : n·n! = (n+1)! - n! ...
- 移动端页面使用rem布局
阿里团队的高清布局方案代码 所谓高清方案就是根据设备屏幕的DPR(设备像素比,又称DPPX,比如dpr=2时,表示1个CSS像素由4个物理像素点组成) 动态设置 html 的font-size, 同时 ...
- jq_常用开发模块
1.循环模块 var html = ""; $.each(data, function(k, v) { html += '<li>' + '<div>' + ...
- [NOI2008] [bzoj1061] 志愿者招募
还是一道费用流的题目.话不多说,进入正题. 题意:给定n个点和m种从l到r覆盖一层的费用,求满足所有点的覆盖层数都大等于权值的最小费用 分析:要做到区间修改,看似比较麻烦. 用差分把区间修改变成单点修 ...
- sqlmap参数说明
--delay 设置每隔几秒测试一次注入 --safe-url 设置sqlmap要访问的正常url --safe-freq 设置每测试多少条注入语句后才去访问safe-url --code 设置能正常 ...
- 第一章:read/sysread/print/syswrite区别
use strict; use warnings; #将读入的内容添加到原字符串后面 my $buffer='START:'; , length($buffer)); #my $byts = read ...
- Linux C中内联汇编的语法格式及使用方法(Inline Assembly in Linux C)【转】
转自:http://www.linuxidc.com/Linux/2013-06/85221p3.htm 阅读Linux内核源码或对代码做性能优化时,经常会有在C语言中嵌入一段汇编代码的需求,这种嵌入 ...
- python基础===函数的几个要点
函数 可接受任意数量参数的函数 位置参数 和 关键字参数 为了能让一个函数接受任意数量的位置参数,可以使用一个*参数. def avg(first, *r): return (first + s ...
- SPOJ 375
默默一看提交时间 -- 这是我以前的代码风格-- #include <cstdio> #include <cstring> #include <vector> #i ...