Painter's Problem

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5875   Accepted: 2825

Description

There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob's brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow. 

Input

The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a 'w' to express a white brick while a 'y' to express a yellow brick.

Output

For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can't paint all the bricks yellow, print 'inf'.

Sample Input

2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww

Sample Output

0
15

Source

 

很明显的异或版Gauss 消元,其中还要枚举出自由变元的取值来确定确定变元的值以查找最小的答案。
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define clr(x) memset(x,0,sizeof(x))
#define clrdown(x) memset(x,-1,sizeof(x))
using namespace std;
int A[][];
int x[];
int free_x[];
int mov[][]={,,,-,,,-,};
char s[];
void init(int n);
int Gauss(int n);
int main()
{
int T,n,p;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
init(n);
if((p=Gauss(n))==-)
{
printf("inf\n");
}
else
{
printf("%d\n",p);
} }
return ;
}
//初始化以及读入操作
void init(int n)
{
clr(A);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
A[i*n+j][i*n+j]=;
for(int k=;k<;k++)
if(i+mov[k][]>= && i+mov[k][]<n && j+mov[k][]>= && j+mov[k][]<n)
{
A[(i+mov[k][])*n+j+mov[k][]][i*n+j]=;
}
}
for(int i=;i<n;i++)
{
scanf("%s",s);
for(int j=;j<n;j++)
if(s[j]=='w')
A[i*n+j][n*n]=;
}
/* for(int i=0;i<n*n;i++)
{
for(int j=0;j<=n*n;j++)
printf("%d ",A[i][j]);
printf("\n");
}*/
clr(free_x);
return ;
}
//gauss消元部分
int Gauss(int n)
{
int num=;
int k,col;
//从第0行0列开始消元
for(k=,col=;k<n*n && col<n*n;col++,k++)
{
if(!A[k][col])
{
for(int i=k+;i<n*n;i++)
if(A[i][col])
{
for(int j=col;j<=n*n;j++)
swap(A[k][j],A[i][j]);
break;
}
}//找k列有最大值的行与之交换(即只要有1)。
if(!A[k][col])
{
k--;
free_x[num++]=col;//记录自由变元的位置
continue;
}//该行全是0,指向当前行下一列并记录自由变元的下标col
for(int i=k+;i<n*n;i++)
if(A[i][col])
for(int j=col;j<=n*n;j++)
A[i][j]=(A[i][j]+A[k][j])%;
}//消元部分
for(int i=;i<n*n;i++)
/* {
for(int j=0;j<=n*n;j++)
printf("%d ",A[i][j]);
printf("\n");
}
printf("%d %d\n",num,k);*/
for(int i=k;i<n*n;i++)
if(A[i][n*n])
return -;
//若k行及之后有(0,0,0,0,……,1)的行则无解,返回-1
int p=n*n-k;//p即为自由变元的数量
int c,temp,ans,minn=,index,ct;
for( index=;index<(<<p);index++)//index从0开始枚举自由变元至1<<p
{
clrdown(x);
ans=;
ct=index;
for(int i=;i<p;ct>>=,i++)
if(ct&)
{
ans++;
x[free_x[i]]=;
}
else
x[free_x[i]]=;
//给是自由变元的x[i]赋值
for(int i=k-;i>=;i--)
{
c=n*n-;
temp=A[i][col];
while(x[c]!=-)
{
if(x[c])
temp=(temp+A[i][c])%;
c--;
}
x[c]=temp;
if(x[c])
ans++;
}
if(ans<minn)
minn=ans;
// printf("%d %d\n",minn,ans);
}
return minn;
}
 
 
 
 

poj 1681(Gauss 消元)的更多相关文章

  1. POJ 1681 高斯消元 枚举自由变元

    题目和poj1222差不多,但是解法有一定区别,1222只要求出任意一解,而本题需要求出最少翻转次数.所以需要枚举自由变元,变元数量为n,则枚举的次数为1<<n次 #include < ...

  2. POJ 1830 开关问题(Gauss 消元)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description ...

  3. hdu 5755(Gauss 消元) &poj 2947

    Gambler Bo Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tota ...

  4. $Gauss$消元

    $Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_ ...

  5. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

  6. Gauss 消元(模板)

    /* title:Gauss消元整数解/小数解整数矩阵模板 author:lhk time: 2016.9.11 没学vim的菜鸡自己手打了 */ #include<cstdio> #in ...

  7. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  8. poj 2065 高斯消元(取模的方程组)

    SETI Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1735   Accepted: 1085 Description ...

  9. POJ1830开关问题——gauss消元

    题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...

随机推荐

  1. UIPageControl---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...

  2. C# IEqualityComparer 使用方法 Linq Distinct使用方法

    创建 IEqualityComparer的接口类必须实现Equals和GetHashCode方法 public class TipComparer : IEqualityComparer<Tip ...

  3. 常见网络命令之traceroute命令一起其他常用命令

    备注:任何命令+/?就可以显示命令帮助,比如:ipconfig /?. traceroute命令 traceroute是UNIX系统中的名字,用来跟踪一个分组从源点到终点的路径.在Windows系统中 ...

  4. PHP序列化、反序列化常用的魔术方法

    __wakeup() //使用unserialize时触发__sleep() //使用serialize时触发__destruct() //对象被销毁时触发__call() //在对象上下文中调用不可 ...

  5. python之计算器

    开发一个简单的python计算器 1.实现加减乘除及拓号优先级解析 2.用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * ...

  6. linux编程之信号量编程

    信号量当我们在多用户系统,多进程系统,或是两者混合的系统中使用线程操作编写程序时,我们经常会发现我们有段临界代码,在此处我们需要保证一个进程(或是一个线程的执行)需要排他的访问一个资源.信号量有一个复 ...

  7. monkey测试===修改adb的默认端口

    最近电脑上由于公司系统的原因,adb的端口被占用了,但是占用端口的进程是必须启动的,不能被杀死,在网上找了很多办法,大家都是说杀死占用端口的进程.这个方法并不适用我,所以在此给大家一个新的方法.新建一 ...

  8. linux内核启动分析(3)

    主要分析do_basic_setup函数里面的do_initcalls()函数,这个函数用来调用所有编译内核的驱动模块中的初始化函数. static void __init do_initcalls( ...

  9. 独立服务器远程重装Linux系统

    独立服务器远程重装Linux系统 http://rashost.com/blog/remote-reinstall-linux-dedicated-server 本文介绍怎样在没有console连接, ...

  10. HighGUI图形图像界面初步——鼠标操作

    OpenCV中的鼠标操作和滑动条的消息映射方式很类似,都是通过一个中介函数配合一个回调函数来实现的,创建和指定滑动条回调函数为createTrackbar, 而指定鼠标操作消息回调函数的函数为setM ...