【清华集训2016】Alice和Bob又在玩游戏
不难的题目。因为SG性质,所以只需要对一棵树求出。
然后如果发现从上往下DP不太行,所以从下往上DP。
考虑一个点对子树的合并,考虑下一个删的点在哪一个子树,那么剩下的状态实际上就是把一个子树所有能达到的状态异或上一个数。
此时还有不到子树的状态,直接插入子树SG异或值。
所以显然,就是维护一个支持全部异或,以及状态合并,查询mex的数据结构,直接trie合并带tag就好了。
时空复杂度 \(O(n \log n)\)
#include <bits/stdc++.h>
const int MAXN = 100010;
const int UP = 21;
const int MN = MAXN * (UP + 1);
int son[MN][2], val[MN], tag[MN], txt;
void mktag(int u, int v) { tag[u] ^= v; }
void pushdown(int u, int dig) {
if (tag[u]) {
if (son[u][0]) mktag(son[u][0], tag[u]);
if (son[u][1]) mktag(son[u][1], tag[u]);
if (tag[u] >> dig & 1)
std::swap(son[u][0], son[u][1]);
tag[u] = 0;
}
}
void update(int u) { val[u] = val[son[u][0]] + val[son[u][1]]; }
void insert(int & x, int v, int dig = UP) {
if (!x) x = ++txt, son[x][0] = son[x][1] = val[x] = tag[x] = 0;
if (dig == -1) return (void) (val[x] = 1);
pushdown(x, dig);
insert(son[x][v >> dig & 1], v, dig - 1);
update(x);
}
int merge(int x, int y, int dig = UP) {
if (!x || !y) return x | y;
pushdown(x, dig), pushdown(y, dig);
son[x][0] = merge(son[x][0], son[y][0], dig - 1);
son[x][1] = merge(son[x][1], son[y][1], dig - 1);
if (dig != -1) update(x);
return x;
}
int query(int u, int dig = UP) {
if (!u) return 0;
if (val[son[u][0]] < (1 << dig)) return query(son[u][0], dig - 1);
return query(son[u][1], dig - 1) | 1 << dig;
}
int head[MAXN], nxt[MAXN << 1], to[MAXN << 1], tot;
void addedge(int b, int e) {
nxt[++tot] = head[b]; to[head[b] = tot] = e;
nxt[++tot] = head[e]; to[head[e] = tot] = b;
}
int sg[MAXN], rts[MAXN];
bool vis[MAXN];
int solve(int u, int fa = 0) {
vis[u] = true;
int pre = 0, & rt = rts[u];
for (int i = head[u]; i; i = nxt[i]) if (to[i] != fa)
solve(to[i], u), pre ^= sg[to[i]];
for (int i = head[u]; i; i = nxt[i])
if (to[i] != fa) {
mktag(rts[to[i]], pre ^ sg[to[i]]);
rt = merge(rt, rts[to[i]]);
}
insert(rt, pre);
sg[u] = query(rt);
return rt;
}
int n, m;
int main() {
std::ios_base::sync_with_stdio(false), std::cin.tie(0);
int T; std::cin >> T;
while (T --> 0) {
std::cin >> n >> m;
for (int i = 1; i <= m; ++i) {
int t1, t2; std::cin >> t1 >> t2;
addedge(t1, t2);
}
int ans = 0;
for (int i = 1; i <= n; ++i) if (!vis[i])
solve(i), ans ^= sg[i];
std::cout << (ans ? "Alice" : "Bob") << '\n';
tot = 0; memset(head, 0, n + 1 << 2);
memset(vis, 0, n + 1); txt = 0;
memset(rts, 0, n + 1 << 2);
}
return 0;
}
【清华集训2016】Alice和Bob又在玩游戏的更多相关文章
- uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数)
uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数) uoj 题解时间 考虑如何求出每棵树(子树)的 $ SG $ . 众所周知一个状态的 $ SG $ 是其后继的 $ mex $ ...
- UOJ #266 【清华集训2016】 Alice和Bob又在玩游戏
题目链接:Alice和Bob又在玩游戏 这道题就是一个很显然的公平游戏. 首先\(O(n^2)\)的算法非常好写.暴力枚举每个后继计算\(mex\)即可.注意计算后继的时候可以直接从父亲转移过来,没必 ...
- [UOJ266]Alice和Bob又在玩游戏
[UOJ266]Alice和Bob又在玩游戏 Tags:题解 作业部落 评论地址 TAG:博弈 题意 不同于树的删边游戏,删掉一个点删去的是到根的路径 题解 这题只和计算\(SG\)有关,博弈的有关内 ...
- [BZOJ4730][清华集训2016][UOJ266] Alice和Bob又在玩游戏
题意:俩智障又在玩游戏.规则如下: 给定n个点,m条无向边(m<=n-1),保证无环,对于每一个联通块,编号最小的为它们的根(也就是形成了一片这样的森林),每次可以选择一个点,将其本身与其祖先全 ...
- bzoj4730: Alice和Bob又在玩游戏
Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...
- UOJ#266. 【清华集训2016】Alice和Bob又在玩游戏 博弈,DSU on Tree,Trie
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ266.html 题解 首先我们可以直接暴力 $O(n^2)$ 用 sg 函数来算答案. 对于一个树就是枚举 ...
- uoj#266. 【清华集训2016】Alice和Bob又在玩游戏(博弈论)
传送门 完了我连sg函数是个啥都快忘了 设\(sg[u]\)为以\(u\)为根节点的子树的\(sg\)函数值,\(rem[u]\)表示\(u\)到根节点的路径删掉之后剩下的游戏的异或值 根节点\(u\ ...
- UOJ 266 - 【清华集训2016】Alice和Bob又在玩游戏(SG 定理+01-trie)
题面传送门 神仙题. 首先注意到此题的游戏是一个 ICG,故考虑使用 SG 定理解决这个题,显然我们只需对每个连通块计算一遍其 SG 值异或起来检验是否非零即可.注意到我们每删除一个点到根节点的路径后 ...
- 【bzoj4730】 Alice和Bob又在玩游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=4730 (题目链接) 题意 给出一个森林,两个人轮流操作,每次把一个节点以及它的祖先全部抹去,无节点可 ...
随机推荐
- jsp文件
新建的jsp文件比新建的html文件多了一行内容<%@ page contentType="text/html; charset=utf-8" %>,这样不会显示乱码 ...
- P2670 【扫雷游戏】
题面哦~~ lalala~~~ 这题数据并不大,最大不过100*100,所以果断穷举 其实本来我是想边读边做的,但读入是个问题. 主要思路呢,就是读完之后穷举一边,只要是炸弹,就把周围一圈8个加一遍 ...
- ssh连接远程服务器出现Host key验证失败的解决方案
原因可能是云服务器重装过,解决方法是找到提示的know_hosts文件,将报错的那一行的秘钥删掉即可.
- Http option 请求是怎么回事
在前后台分离的项目中,经常会遇到浏览器想服务端发送一个post/patch请求,实际上产生了两个请求,一个是Option,另一个才是真实的Post/Patch请求, 而get请求则不会产生Option ...
- WPF贝塞尔曲线示例
WPF贝塞尔曲线示例 贝塞尔曲线在之前使用SVG的时候其实就已经有接触到了,但应用未深,了解的不是很多,最近在进行图形操作的时候需要用到贝塞尔曲线,所以又重新来了解WPF中贝塞尔曲线的绘制. 一阶贝塞 ...
- 剑指offer-数字在排序数组中出现的次数-数组-python
题目描述 统计一个数字在排序数组中出现的次数. python 内置函数 count()一行就能搞定 解题思路 二分查找到给定的数字及其坐标.以该坐标为中点,向前向后找到这个数字的 始 – 终 ...
- 15 Python之内置函数
思维导图: https://www.processon.com/mindmap/5c10cb5ee4b0090a2c9db92f 1. 匿名函数统一的名字是:<lambda> 使用场景: ...
- vue-router实现原理
vue-router实现原理 近期面试,遇到关于vue-router实现原理的问题,在查阅了相关资料后,根据自己理解,来记录下.我们知道vue-router是vue的核心插件,而当前vue项目一般都是 ...
- Zookeeper安装和运行
安装环境: CentOS 7 内存1GB JDK版本:1.8.0_112 为JDK配置如下环境变量: 编辑/etc/profile.d/jdk.sh JAVA_HOME=/usr/local/jd ...
- linux下ifconfig只剩下lo的解决方法
运行以下命令,删除旧的网络配置,重新让networkmanager自动配置即可 sudo service network-manager stop sudo rm /var/lib/NetworkMa ...