Luogu P4707 重返现世 (拓展Min-Max容斥、DP)
题目链接
https://www.luogu.org/problem/P4707
题解
最近被神仙题八连爆了……
首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的——Kth Min-Max容斥
这个东西需要对Min-Max容斥的本质有着比较深刻的理解。
首先我们从另一个角度证明Min-Max容斥的正确性: \(\max(S)=\sum_{T\in S}f(|T|)\min(T)\), 对于第\((x+1)\)大来说它被计算的次数是\(\sum_{k\ge 0} {x\choose k}f(k+1)\),则有\([x=0]=\sum_{k\ge 0} {x\choose k}f(k+1)\), 二项式反演之后令\(f(k)=(-1)^{k-1}\)即可达到目的。
那么考虑把刚才式子中\([x=0]\)换成\([x=k-1]\)会怎样? 依然采取构造系数的思路,得出的结果是: \(f[x]=(-1)^{x-k}{x-1\choose k-1}\).
问题相当于求第\(K\)大的期望,所以可以转化成子集最小值: \(\text{kthmax}(S)=\sum_{T\in S}(-1)^{|T|-K}{|T|-1\choose k-1}\min(T)=\sum_{T\in S}\frac{m}{p_T}(-1)^{|T|-K}{|T|-1\choose k-1}\), 其中\(p_T=\sum_{i\in T} p_i\)
这个东西可以用一个dp来搞: 设\(dp[i][j][k]\)表示前\(i\)个数\(p\)之和为\(j\), 当组合数的下指标为\(k\)时每种方案乘以容斥系数之和。
考虑转移: 如果第\(i\)个元素不属于\(T\), 显然是加上\(dp[i-1][j][k]\); 如果属于\(T\), 那么要求的组合数\({|T|-1\choose k-1}={|T|-2\choose k-1}+{|T|-2\choose k-2}\), 对于前一项直接是\(dp[i-1][j-p_i][k]\), 对于后一项因为是从\(k-1\)转移过来,所以要多乘个\(-1\), 最终结果是减去\((dp[i-1][j-p_i][k]-dp[i-1][j-p_i][k-1])\).
然而这个dp的边界问题很难处理。这时我们不妨脱离实际问题,去思考一下组合数在指标为负数时的定义,直接代入可得\(dp[0][0][k]=-1 (k>0)\).
(然而感觉这种边界设置方法并不严谨)
时间复杂度\(O(nm(n-k))\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 1000;
const int S = 1e4;
const int M = 11;
const int P = 998244353;
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
llong a[N+3];
llong dp[S+3][M+2];
int n,m,s;
int main()
{
scanf("%d%d%d",&n,&m,&s); m = n-m+1;
for(int i=1; i<=n; i++) scanf("%lld",&a[i]);
for(int i=1; i<=m; i++) dp[0][i] = P-1;
for(int i=1; i<=n; i++)
{
for(int j=s; j>=a[i]; j--)
{
for(int k=1; k<=m; k++)
{
dp[j][k] = (dp[j][k]+dp[j-a[i]][k-1]-dp[j-a[i]][k]+P)%P;
}
}
}
llong ans = 0ll;
for(int i=1; i<=s; i++)
{
ans = (ans+dp[i][m]*s%P*mulinv(i))%P;
}
printf("%lld\n",ans);
return 0;
}
Luogu P4707 重返现世 (拓展Min-Max容斥、DP)的更多相关文章
- 洛谷P4707 重返现世(扩展MinMax容斥+dp)
传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
- Luogu P4707 重返现世
题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...
- 【题解】洛谷P4707重返现世
在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...
- 洛谷 P4707 重返现世
洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
随机推荐
- HDU 6662 Acesrc and Travel 换根DP,宇宙最傻记录
#include<bits/stdc++.h> typedef long long ll; using namespace std; const int maxn=1e6+50; cons ...
- AppCan全局搜索
Ctrl + H,在项目中全局搜索英文和中文
- 2.bash术语定义
2.术语定义POSIX:基于Unix的一系列操作系统可移植性的标准.Bash主要和POSIX标准第1003.1号中的<Shell和使用工具>有关.空白符:一个空格或者制表符.内部命令:在s ...
- 第六篇 ajax
加载异步数据 6-1 加载异步数据 XMLHttpRequest--传统的JavaScript方法实现Ajax功能 6-1-a <!DOCTYPE html PUBLIC "-//W3 ...
- Altium Designer 编译原理图出现has no driving source警告解决办法
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明. 作者:struct_mooc 博客地址:https://www.cnblogs.com/stru ...
- css设置全屏背景图,background-size 属性
在写主题样式的时候经常会碰到用背景图铺满整个背景的需求,这里分享下使用方法 需要的效果 图片以背景的形式铺满整个屏幕,不留空白区域 保持图像的纵横比(图片不变形) 图片居中 不出现滚动条 多浏览器支持 ...
- Vue路由守卫之组件内路由守卫
beforeRouteEnter,进入路由前.需要注意这里不能使用this,因为我们使用的是进入路由之前,那会组件还没创建,得不到this这个属性,所有我们只能使用过vm异步语句来让 ...
- IT经理工作职责
IT经理工作职责: 1. 管理公司信息技术以及计算机系统. 2. 确保公司信息技术是可访问的并且配备了现有的可用的硬件和软件. 3. 监控并且维护公司信息技术并确保能够得到最大化的使用 ...
- deep_learning_Function_LSTM_dynamic_rnn
一. tf.nn.dynamic_rnn的输出 tf.nn.dynamic_rnn的输入参数如下 tf.nn.dynamic_rnn( cell, inputs, sequence_ ...
- 基于mini2440嵌入式Linux根文件系统制作(Initramfs和nfs两种跟文件系统)
嵌入式系统由三部分构成: 1.bootoader---bootparameters---2.kernel 3.Root-filesysytem 一个内核可以挂载多个文件系统,但是有一个根文件系统所以叫 ...