第 12 章 python并发编程之协程
一、引子
主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只用一个)情况下实现并发,并发的本质:切换+保存状态
cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长。

1:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率,为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法:
#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
#串行执行
import time
def consumer(res):
'''任务1:接收数据,处理数据'''
pass def producer():
'''任务2:生产数据'''
res=[]
for i in range(10000000):
res.append(i)
return res start=time.time()
#串行执行
res=producer()
consumer(res)
stop=time.time()
print(stop-start) #1.5536692142486572 #基于yield并发执行
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i) start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer() stop=time.time()
print(stop-start) #2.0272178649902344 单纯地切换反而会降低运行效率
单纯地切换反而会降低运行效率
2、第一种情况的切换,在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一任务二的计算,效率的提升就在于此。
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i)
time.sleep(2) start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行 stop=time.time()
print(stop-start) yield并不能实现遇到io切换
yield并不能实现遇到io切换
对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。
协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率,为了实现它,我们需要找寻可以同时满足以下条件的解决方案:
#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。 #2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换
二、协程介绍
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine,一句话说明说明是协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
需要强调的是:
#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程类控制协程的切换
优点如下:
#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
1、必须在只有一个单线程里实现并发
2、修改共享数据不需要加锁
3、用户程序里自己保存多个控制流的上下文栈
4、附加:一个协程遇到io操作自动切换到其它协程(如何实现检测io,yield,greenlet都无法实现,就用到了gevent模块(select机制))。
三、Greenlet
如果我们在单线程内有20个任务,要想实现在多个任务之间切换,使用yield生产器的方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send...非常麻烦),而使用greenlet模块可以非常简单地实现这20个任务直接的切换
#安装
pip3 install greenlet
from greenlet import greenlet def eat(name):
print('%s eat 1' %name)
g2.switch('egon')
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name) g1=greenlet(eat)
g2=greenlet(play) g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度
#顺序执行
import time
def f1():
res=1
for i in range(100000000):
res+=i def f2():
res=1
for i in range(100000000):
res*=i start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337 #切换
from greenlet import greenlet
import time
def f1():
res=1
for i in range(100000000):
res+=i
g2.switch() def f2():
res=1
for i in range(100000000):
res*=i
g1.switch() start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524
greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到io自动切换来提升效率的问题。
单线程里这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2....如此,才能提高效率,这就用到了Gevent模块。
四、Gevent介绍
#安装
pip3 install gevent
Gevent是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet,它是以C扩展模块形式接入python的轻量级协程,Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
遇到io阻塞时会自动切换任务
import gevent
def eat(name):
print('%s eat 1' %name)
gevent.sleep(2)
print('%s eat 2' %name) def play(name):
print('%s play 1' %name)
gevent.sleep(1)
print('%s play 2' %name) g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了 from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey;monkey.patch_all() import gevent
import time
def eat():
print('eat food 1')
time.sleep(2)
print('eat food 2') def play():
print('play 1')
time.sleep(1)
print('play 2') g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('主')
我们可以用threading.current_thread().getNname()来查看每个g1和g2,查看的结果为Dummy Thread-n,即假线程
from gevent import monkey;monkey.patch_all()
import gevent
import time
import threading
def eat(name):
print(threading.current_thread().getName())
print('%s eat 1' %name)
time.sleep(1)
print('%s eat 2' %name)
def play(name):
print(threading.current_thread().getName()) print('%s play 1' %name)
time.sleep(2)
print('%s play 2' %name) g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,'egon') # g1.join()
# g2.join()
gevent.joinall([g1,g2]) '''
执行结果
DummyThread-1
egon eat 1
DummyThread-2
egon play 1
egon eat 2
egon play 2
'''
五、Gevent之间同步与异步
from gevent import spawn,joinall,monkey;monkey.patch_all() import time
def task(pid):
"""
Some non-deterministic task
"""
time.sleep(0.5)
print('Task %s done' % pid) def synchronous():
for i in range(10):
task(i) def asynchronous():
g_l=[spawn(task,i) for i in range(10)]
joinall(g_l) if __name__ == '__main__':
print('Synchronous:')
synchronous() print('Asynchronous:')
asynchronous()
#上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
六、Gevent之应用举例一
from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time def get_page(url):
print('GET: %s' %url)
response=requests.get(url)
if response.status_code == 200:
print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time()
gevent.joinall([
gevent.spawn(get_page,'https://www.python.org/'),
gevent.spawn(get_page,'https://www.yahoo.com/'),
gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time)) 协程应用:爬虫
协程应用:爬虫
七、Gevent之应用举例二
通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)
from gevent import monkey;monkey.patch_all()
from socket import *
import gevent #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket() def server(server_ip,port):
s=socket(AF_INET,SOCK_STREAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
s.bind((server_ip,port))
s.listen(5)
while True:
conn,addr=s.accept()
gevent.spawn(talk,conn,addr) def talk(conn,addr):
try:
while True:
res=conn.recv(1024)
print('client %s:%s msg: %s' %(addr[0],addr[1],res))
conn.send(res.upper())
except Exception as e:
print(e)
finally:
conn.close() if __name__ == '__main__':
server('127.0.0.1',8080) 服务端
服务端
#_*_coding:utf-8_*_
__author__ = 'Linhaifeng' from socket import * client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8')) 客户端
客户端
from threading import Thread
from socket import *
import threading def client(server_ip,port):
c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
c.connect((server_ip,port)) count=0
while True:
c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
msg=c.recv(1024)
print(msg.decode('utf-8'))
count+=1
if __name__ == '__main__':
for i in range(500):
t=Thread(target=client,args=('127.0.0.1',8080))
t.start() 多线程并发多个客户端
多线程并发多个客户端
第 12 章 python并发编程之协程的更多相关文章
- python并发编程之协程知识点
由线程遗留下的问题:GIL导致多个线程不能真正的并行,CPython中多个线程不能并行 单线程实现并发:切换+保存状态 第一种方法:使用yield,yield可以保存状态.yield的状态保存与操作系 ...
- 32 python 并发编程之协程
一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...
- 四 python并发编程之协程
一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...
- python并发编程之协程(实践篇)
一.协程介绍 协程:是单线程下的并发,又称微线程,纤程.一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的. 对于单线程下,我们不可避免程序中出现io操作,但如果我们 ...
- 第十篇.5、python并发编程之协程
一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...
- 37、python并发编程之协程
目录: 一 引子 二 协程介绍 三 Greenlet 四 Gevent介绍 五 Gevent之同步与异步 六 Gevent之应用举例一 七 Gevent之应用举例二 一 引子 本节的主题是基于单线程来 ...
- python 并发编程之协程
一.协程 协程: 单线程下的并发,又称 微线程.协程是一种用户态的的轻量级线程,即协程是由用户程序自己控制调度的. 协程的本质就是在单线程下,由用户自己控制一个任务,遇到 io 阻塞就切换另外一个 ...
- python并发编程之协程
---恢复内容开始--- 一.join方法 (1)开一个主线程 from threading import Thread,currentThread import time def walk(): p ...
- python全栈开发从入门到放弃之socket并发编程之协程
一.为什么会有协程 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情 ...
随机推荐
- Oracle数据库的特点与工作原理
Oracle数据库的特点 1.开放性: Oracle能在所有主流平台上运行(包括Windows),完全支持所有的工业标准,采用完全开放策略,可以使客户选择最适合的解决方案,对开发商全力支持. 2.可伸 ...
- [2019杭电多校第三场][hdu6606]Distribution of books(线段树&&dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6606 题意为在n个数中选m(自选)个数,然后把m个数分成k块,使得每块数字之和最大的最小. 求数字和最 ...
- Python学习-第一天-函数和模块的使用
目录 Python学习-第一天总结 print输出的一种简单格式 函数参数之可变参数 模块管理函数 if else语句的单行实现(简洁) 变量作用域 函数书写格式 Python学习-第一天总结 pri ...
- JS—图片压缩上传(单张)
*vue+webpack环境,这里的that指到vue实例 <input type="file" name="file" accept="ima ...
- 给定两个list A ,B,请用找出 A ,B中相同的元素,A ,B中不同的元素 ??
A.B 中相同元素:print(set(A)&set(B)) A.B 中不同元素:print(set(A)^set(B))
- Python内建函数reduce()用法
reduce把一个函数作用在一个序列[x1, x2, x3...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,下面讲述Python内建函数reduce()用法. ...
- ISC2016训练赛 phrackCTF--Classical CrackMe
测试文件:https://static2.ichunqiu.com/icq/resources/fileupload/phrackCTF/REVERSE/CrackMe.rar 1.准备 获得信息 3 ...
- 怎样使一个宽为200px和高为200px的层垂直居中于浏览器中?写出CSS样式代码。
div{ height:100px; width:100px; position:absolute; top:50%; width:50%; margin-letf:-100px; margin-to ...
- [转]Oracle 11g 基于CentOS7静默安装教程(无图形界面,远程安装) --有部份地方有问题
Oracle 11g 基于CentOS7静默安装教程(无图形界面,远程安装) [转载]原文地址:http://canonind.blog.51cto.com/8239025/1883066 一.安装前 ...
- Python之文件的读
python中文件的读操作:以只读的形式打开文件->逐行读取文件中的内容->关闭文件 代码如下 #文件的读 f = file(u'F:\\python\\homework.txt', 'r ...