题目传送门(内部题126)


输入格式

  第一行两个个整数$n,m$表示区间的长度与彩灯的数量。
  接下来$m$行,每行三个整数$l_i,r_i,a_i$表示一条彩灯能够覆盖的区间以及它的美观程度。


输出格式

  输出一行$m$个整数,第$i$个数表示$k=i$时的最大美观程度。


样例

样例输入:

25 6
1 2 10
2 3 10
1 3 21
3 4 10
4 5 10
3 5 19

样例输出:

41 80 80 80 80 80


数据范围与提示

  对于$25\%$的数据,$m\leqslant 20$
  对于$45\%$的数据,$n,m\leqslant 5,000$
  对于另外$25\%$的数据,所有$a_i$相同
  对于$100\%$的数据,$1\leqslant l_i\leqslant r_i\leqslant n,m\leqslant 300,000,a_i\leqslant 10^9$


题解

因为不能重叠,所以将所有的区间向其覆盖的区间连边,单调栈维护即可。

然后会得到一棵树,对于每一个节点维护一个单调队列更新其父节点答案即可,思想类似树上$DP$。

时间复杂度:$\Theta(n\log n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
struct rec{int id,l,r,a;}s[400001];
struct node{int nxt,to;}e[700001];
int head[400001],cnt;
int n,m;
int now=2;
int size[300001];
long long ans;
priority_queue<long long> q[400001],v;
bool cmp(rec a,rec b){return a.l<b.l||(a.l==b.l&&a.r>b.r)||(a.l==b.l&&a.r==b.r&&a.id>b.id);}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void build(int x)
{
while(s[x].l<=s[now].l&&s[now].r<=s[x].r)
{
add(x,now);
now++;
build(now-1);
}
}
void dfs(int x)
{
for(int i=head[x];i;i=e[i].nxt)
{
dfs(e[i].to);
size[x]=max(size[x],size[e[i].to]);
}
size[x]++;
for(int i=head[x];i;i=e[i].nxt)
if(size[e[i].to]+1==size[x]){swap(q[x],q[e[i].to]);e[i].to=0;break;}
for(int i=head[x];i;i=e[i].nxt)
{
if(e[i].to)
{
while(q[e[i].to].size())
{
v.push(q[x].top()+q[e[i].to].top());
q[x].pop();q[e[i].to].pop();
}
swap(v,q[x]);
while(v.size())
{
q[x].push(v.top());
v.pop();
}
}
}
q[x].push(s[x].a);
}
int main()
{
scanf("%d%d",&n,&m);n--;
for(int i=1;i<=m;i++)
{
s[i].id=i;
scanf("%d%d%d",&s[i].l,&s[i].r,&s[i].a);
s[i].r--;
}
s[++m]=(rec){m,1,n,0};
sort(s+1,s+m+1,cmp);
build(1);dfs(1);
for(int i=1;i<=m;i++)q[1].push(0);
for(int i=1;i<m;i++)
{
ans+=q[1].top();
q[1].pop();
printf("%lld ",ans);
}
return 0;
}

rp++

[CSP-S模拟测试]:Cover(单调栈++单调队列+DP)的更多相关文章

  1. 单调栈&单调队列入门

    单调队列是什么呢?可以直接从问题开始来展开. Poj 2823 给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数. 数列长度:\(N <=10^6 ,m<=N\) 解法① ...

  2. POJ 3250 Bad Hair Day --单调栈(单调队列?)

    维护一个单调栈,保持从大到小的顺序,每次加入一个元素都将其推到尽可能栈底,知道碰到一个比他大的,然后res+=tail,说明这个cow的头可以被前面tail个cow看到.如果中间出现一个超级高的,自然 ...

  3. 单调栈&单调队列学习笔记!

    ummm,,,都是单调系列就都一起学了算了思想应该都差不多呢qwq 其实感觉这俩没有什么可说的鸭QAQ就是维护一个单调的东西,区别在于单调栈是一段进一段出然后单调队列是一段进另一段出?没了 好趴辣重点 ...

  4. 小结:单调栈 & 单调队列

    概要: 对于维护信息具有单调性的性质或者问题可以转化为具有单调性质的模型的题,我们可以考虑用单调栈或单调队列. 技巧及注意: 技巧很多,只要能将问题转化为单调性问题,就好解决了. 当维护固定长度的单调 ...

  5. 单调栈&单调队列

    最近打了三场比赛疯狂碰到单调栈和单调队列的题目,第一,二两场每场各一个单调栈,第三场就碰到单调队列了.于是乎就查各种博客,找单调栈,单调队列的模板题去做,搞着搞着发现其实这两个其实是一回事,只不过利用 ...

  6. HZNU-ACM寒假集训Day10小结 单调栈-单调队列

    数据结构往往可以在不改变主算法的前提下题高运行效率,具体做法可能千差万别,但思路却是有规律可循 经典问题:滑动窗口  单调队列O(n) POJ 2823 我开始写的: TLE 说明STL的库还是有点慢 ...

  7. 联赛模拟测试18 A. 施工 单调队列(栈)优化DP

    题目描述 分析 对于 \(Subtask\ 1\),可以写一个 \(n^3\) 的 \(DP\),\(f[i][j]\) 代表第 \(i\) 个建筑高度为 \(j\) 时的最小花费,随便转移即可 时间 ...

  8. [CSP-S模拟测试]:小P的单调数列(树状数组+DP)

    题目描述 小$P$最近喜欢上了单调数列,他觉得单调的数列具有非常多优美的性质.经过小$P$复杂的数学推导,他计算出了一个单调增数列的艺术价值等于该数列中所有书的总和.并且以这个为基础,小$P$还可以求 ...

  9. ACM数据结构-单调栈、队列

    1.最大数 代码: #include <stdio.h> #include <memory.h> #include <math.h> #include <st ...

随机推荐

  1. Python sqlalchemy 高级用法

    一. 关联查询 sys_user_list = SysPermission.query.join(OrgRolePermission, OrgRolePermission.sys_permission ...

  2. webAapi

    学习目标: 掌握API和Web API的概念 掌握常见浏览器提供的API的调用方式 能通过Web API开发常见的页面交互功能 能够利用搜索引擎解决问题 typora-copy-images-to: ...

  3. luogu P3620 [APIO/CTSC 2007]数据备份

    luogu 首先如果一条线不是了连接的相邻两个位置一定不优,把它拆成若干连接相邻位置的线.所以现在问题是有\(n\)个物品,选\(k\)个,要求选的位置不能相邻,求最小总和 如果没有选的位置不能相邻这 ...

  4. N1试卷常考词汇总结

    免れる まぬがれる 免去,幸免 軽率 けいそつ 轻率,草率 捩れる ねじれる 拧劲儿,扭歪,弯曲 裂ける さける 裂开,破裂 避ける さける 躲避,避开 つまむ 挟,捏,掐 追及 ついきゅう 追上.追 ...

  5. Nginx安装目录详解

    Nginx安装目录详解 1. 查看有关nginx的所有目录列表,输入命令  rpm -ql nginx 可以查看有关nginx目录信息,但是注意 这种命令只能是在基于yum安装的方式才可以. 2. 下 ...

  6. php检测函数是否存在函数 function_exists

    php检测函数是否存在函数 function_exists 语法 bool function_exists ( string $function_name )检查的定义的函数的列表,同时内置(内部)和 ...

  7. 火狐插件simple timer 定时打开指定网页

    今天我要介绍的是火狐浏览器一款插件:Simple Timer,该插件是火狐一个可以添加计时器和定时提醒功能插件,该插件的主要作用就是当你的设置在某一个时刻提醒时,插件会自动弹出通知,并且自动打开你想要 ...

  8. Centos修改IP的两种方式

    nmtui命令调出修改窗口:nmtui    重启网卡:/etc/init.d/network restart 或者:service network restart 方式二: 进入网络配置文件目录 首 ...

  9. 原型模式故事链(5)--JS变量作用域、作用域链、闭包

    上一章 JS执行上下文.变量提升.函数声明 传送门:https://segmentfault.com/a/11... 本次我们主要讲讲变量作用域和闭包变量作用域:顾名思义:变量起作用的范围.变量分为全 ...

  10. Java技术综述

    自己打算好好学习下Java,所以想先明晰Java开发中到底有哪些技术,以便以后学习的过程中,可以循序渐进,随着学习的深入,本文将不断更新. Java基础教程将Java的入门基础知识贯穿在一个实例中,逐 ...