分析

之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法。

由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的\(k+2\)次函数,\(ans(x)\)是关于\(x\)的\(k+3\)次函数。

由于点值连续,插值可以做到\(O(n)\),求\(g(x)\)和\(ans(x)\)都需要插值,因此时间复杂度为\(O(Tn^2 \log n)。(\)\log$是快速幂的,貌似可以通过预处理逆元优化掉,不过AC这道题已经绰绰有余了。)

代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const LL MOD=1234567891;
const int MAXN=130; int k;
LL s,n,d,inv[MAXN],ff[MAXN],gg[MAXN],hh[MAXN]; inline LL qpow(LL x,LL y){
LL ret=1,tt=x%MOD;
while(y){
if(y&1) ret=ret*tt%MOD;
tt=tt*tt%MOD;
y>>=1;
}
return ret;
} LL g(LL x){
if(x<=k+3) return gg[x];
LL son=1,mot=1;
rin(i,2,k+3) son=son*(x-i+MOD)%MOD;
rin(i,2,k+3) mot=mot*(1-i+MOD)%MOD;
LL ret=0;
rin(i,1,k+3){
ret=(ret+gg[i]*son%MOD*qpow(mot,MOD-2))%MOD;
son=son*qpow(x-(i+1)+MOD,MOD-2)%MOD*(x-i+MOD)%MOD;
mot=mot*qpow(k+3-i+MOD,MOD-2)%MOD*(MOD-i)%MOD;
}
return ret;
} LL h(LL x){
if(x<=k+4) return hh[x];
LL son=1,mot=1;
rin(i,2,k+4) son=son*(x-i+MOD)%MOD;
rin(i,2,k+4) mot=mot*(1-i+MOD)%MOD;
LL ret=0;
rin(i,1,k+4){
ret=(ret+hh[i]*son%MOD*qpow(mot,MOD-2))%MOD;
son=son*qpow(x-(i+1)+MOD,MOD-2)%MOD*(x-i+MOD)%MOD;
mot=mot*qpow(k+4-i+MOD,MOD-2)%MOD*(MOD-i)%MOD;
}
return ret;
} int main(){
int T=read();
while(T--){
k=read(),s=read(),n=read(),d=read();
ff[0]=0;
rin(i,1,k+3) ff[i]=(ff[i-1]+qpow(i,k))%MOD;
gg[0]=0;
rin(i,1,k+3) gg[i]=(gg[i-1]+ff[i])%MOD;
hh[0]=g(s);
rin(i,1,k+4) hh[i]=(hh[i-1]+g((s+i*d)%MOD))%MOD;
printf("%lld\n",h(n));
}
return 0;
} /*
5
120 102497463 92989700 20360484
66 105420730 97423975 32388530
95 64109604 78460286 106343540
101 66688000 92566071 49084899
102 120568505 7166048 11911911 948519230
179937457
690200633
382076592
500116309
*/

[BZOJ3453]tyvj 1858 XLkxc:拉格朗日插值的更多相关文章

  1. BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)

    题意 题目链接 Sol 把式子拆开,就是求这个东西 \[\sum_{i = 0} ^n \sum_{j = 1}^{a + id} \sum_{x =1}^j x^k \pmod P\] 那么设\(f ...

  2. BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)

    BZOJ 题意即求\[\sum_{i=0}^n\sum_{j=1}^{a+id}\sum_{x=1}^jx^k\] 我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^ ...

  3. 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)

    [题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...

  4. bzoj3453: tyvj 1858 XLkxc(拉格朗日插值)

    传送门 \(f(n)=\sum_{i=1}^ni^k\),这是自然数幂次和,是一个以\(n\)为自变量的\(k+1\)次多项式 \(g(n)=\sum_{i=1}^nf(i)\),因为这东西差分之后是 ...

  5. BZOJ 3453 - tyvj 1858 XLkxc(插值+推式子)

    题面传送门 首先根据我们刚学插值时学的理论知识,\(f(i)\) 是关于 \(i\) 的 \(k+1\) 次多项式.而 \(g(x)\) 是 \(f(x)\) 的前缀和,根据有限微积分那一套理论,\( ...

  6. 拉格朗日插值&&快速插值

    拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k ...

  7. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  8. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  9. 快速排序 and 拉格朗日插值查找

    private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...

随机推荐

  1. easyUI关键(常见)组件详解

    一.easyUI 相关介绍 1.EasyUI 是前端框架,封装大量 css和封装大量 JS 2.使用前端框架时,给标签定义class 属性,就会有样式和脚本功能了(class属性对应了相关封装过的cs ...

  2. vue-router的query和params的区别

    vue-router的query和params的区别 首先简单来说明一下$router和$route的区别 $router为VueRouter实例,想要导航到不同url,则使用$router.push ...

  3. vue-cli设置引入目录

    打开build/webpack.base.conf.js 找到module.exports下的resolve这行 刚开始是这样的 resolve: { extensions: ['.js', '.vu ...

  4. Windows向Linux上传文件夹

      1.将文件夹压缩成.tar.gz文件: 安装7-Zip,选择要压缩的文件夹--右键--“7-Zip”--“添加到压缩包...”,压缩格式选择“tar”, 在此目下就生成了“文件夹名.tar”文件, ...

  5. HTTPS加密原理与过程

    HTTPS加密原理与过程 HTTP 超文本传输协议一种属于应用层的协议 缺点: 通信使用明文(不加密),内容可能会被窃听 不验证通信方的身份,因此有可能遭遇伪装 无法证明报文的完整性,所以有可能已遭篡 ...

  6. django笔记二之数据库

    django笔记二之数据库 [同步数据库之前的操作] yum install MySQL-python.x86_64 -y 2)开启数据库服务并创建表 创建数据库设置 为utf8: create da ...

  7. Python深入:编码问题总结

    转自:http://blog.csdn.net/gqtcgq/article/details/47068817 一:字符编码简介          1:ASCII          最初的计算机的使用 ...

  8. Python 输出百分比

    注:python3环境试验 0x00 使用参数格式化{:2%} {:.2%}: 显示小数点后2位 print('{:.2%}'.format(10/50)) #percent: 20.00% {:.0 ...

  9. jquery在线引用地址大全 全部来自官网

    谷歌的就算了,容易被屏蔽,下面都是官方原版的 最新版本 <script src="http://code.jquery.com/jquery-latest.js">&l ...

  10. python 文件夹压缩

    import os import zipfile def zipDir(dirpath,outFullName): """ 压缩指定文件夹 :param dirpath: ...