分析

之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法。

由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的\(k+2\)次函数,\(ans(x)\)是关于\(x\)的\(k+3\)次函数。

由于点值连续,插值可以做到\(O(n)\),求\(g(x)\)和\(ans(x)\)都需要插值,因此时间复杂度为\(O(Tn^2 \log n)。(\)\log$是快速幂的,貌似可以通过预处理逆元优化掉,不过AC这道题已经绰绰有余了。)

代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const LL MOD=1234567891;
const int MAXN=130; int k;
LL s,n,d,inv[MAXN],ff[MAXN],gg[MAXN],hh[MAXN]; inline LL qpow(LL x,LL y){
LL ret=1,tt=x%MOD;
while(y){
if(y&1) ret=ret*tt%MOD;
tt=tt*tt%MOD;
y>>=1;
}
return ret;
} LL g(LL x){
if(x<=k+3) return gg[x];
LL son=1,mot=1;
rin(i,2,k+3) son=son*(x-i+MOD)%MOD;
rin(i,2,k+3) mot=mot*(1-i+MOD)%MOD;
LL ret=0;
rin(i,1,k+3){
ret=(ret+gg[i]*son%MOD*qpow(mot,MOD-2))%MOD;
son=son*qpow(x-(i+1)+MOD,MOD-2)%MOD*(x-i+MOD)%MOD;
mot=mot*qpow(k+3-i+MOD,MOD-2)%MOD*(MOD-i)%MOD;
}
return ret;
} LL h(LL x){
if(x<=k+4) return hh[x];
LL son=1,mot=1;
rin(i,2,k+4) son=son*(x-i+MOD)%MOD;
rin(i,2,k+4) mot=mot*(1-i+MOD)%MOD;
LL ret=0;
rin(i,1,k+4){
ret=(ret+hh[i]*son%MOD*qpow(mot,MOD-2))%MOD;
son=son*qpow(x-(i+1)+MOD,MOD-2)%MOD*(x-i+MOD)%MOD;
mot=mot*qpow(k+4-i+MOD,MOD-2)%MOD*(MOD-i)%MOD;
}
return ret;
} int main(){
int T=read();
while(T--){
k=read(),s=read(),n=read(),d=read();
ff[0]=0;
rin(i,1,k+3) ff[i]=(ff[i-1]+qpow(i,k))%MOD;
gg[0]=0;
rin(i,1,k+3) gg[i]=(gg[i-1]+ff[i])%MOD;
hh[0]=g(s);
rin(i,1,k+4) hh[i]=(hh[i-1]+g((s+i*d)%MOD))%MOD;
printf("%lld\n",h(n));
}
return 0;
} /*
5
120 102497463 92989700 20360484
66 105420730 97423975 32388530
95 64109604 78460286 106343540
101 66688000 92566071 49084899
102 120568505 7166048 11911911 948519230
179937457
690200633
382076592
500116309
*/

[BZOJ3453]tyvj 1858 XLkxc:拉格朗日插值的更多相关文章

  1. BZOJ3453: tyvj 1858 XLkxc(拉格朗日插值)

    题意 题目链接 Sol 把式子拆开,就是求这个东西 \[\sum_{i = 0} ^n \sum_{j = 1}^{a + id} \sum_{x =1}^j x^k \pmod P\] 那么设\(f ...

  2. BZOJ.3453.tyvj 1858 XLkxc(拉格朗日插值)

    BZOJ 题意即求\[\sum_{i=0}^n\sum_{j=1}^{a+id}\sum_{x=1}^jx^k\] 我们知道最后一个\(\sum\)是自然数幂和,设\(f(n)=\sum_{x=1}^ ...

  3. 【BZOJ】3453: tyvj 1858 XLkxc 拉格朗日插值(自然数幂和)

    [题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日 ...

  4. bzoj3453: tyvj 1858 XLkxc(拉格朗日插值)

    传送门 \(f(n)=\sum_{i=1}^ni^k\),这是自然数幂次和,是一个以\(n\)为自变量的\(k+1\)次多项式 \(g(n)=\sum_{i=1}^nf(i)\),因为这东西差分之后是 ...

  5. BZOJ 3453 - tyvj 1858 XLkxc(插值+推式子)

    题面传送门 首先根据我们刚学插值时学的理论知识,\(f(i)\) 是关于 \(i\) 的 \(k+1\) 次多项式.而 \(g(x)\) 是 \(f(x)\) 的前缀和,根据有限微积分那一套理论,\( ...

  6. 拉格朗日插值&&快速插值

    拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k ...

  7. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  8. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  9. 快速排序 and 拉格朗日插值查找

    private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...

随机推荐

  1. Python3.7 下安装pyqt5

    第一步:首先进入python安装目录下的 [scripts]. 第二步:执行安装pyqt5的命令:python37 -m pip install pyqt5 出现以下安装过程代表安装成功. 第三步:在 ...

  2. 牛逼哄洪的 Java 8 Stream,性能也牛逼么?

    那么,Stream API的性能到底如何呢,代码整洁的背后是否意味着性能的损耗呢?本文对Stream API的性能一探究竟. 为保证测试结果真实可信,我们将JVM运行在 -server模式下,测试数据 ...

  3. HDU-5471 Count the Grid

    题目描述 一个矩阵中可以任意填\(m\)个数.给你\(N\)个小矩阵并且告诉你此矩阵中的最大值\(v\),求有多少种大矩阵满足所给条件.\((\%1e9+7)\) Input 包含\(T\)组数据. ...

  4. Gantt与PERT图区别

    甘特图也就做进度管理图.他是一种简单的水平条形图,它以日历为基准描述项目任务,水平轴表示日历时间线,每一个线条表示一个任务,任务名称垂直的列在左边列中,图中的线条的起点和终点对应水平轴上的时间,分别表 ...

  5. Largest Beautiful Number CodeForces - 946E (贪心)

    大意: 定义一个好数为位数为偶数, 且各位数字重排后可以为回文, 对于每个询问, 求小于$x$的最大好数. 假设$x$有$n$位, 若$n$为奇数, 答案显然为$n-1$个9. 若为偶数, 我们想让答 ...

  6. Python 进阶篇

    作者:武沛齐 出处:http://www.cnblogs.com/wupeiqi/articles/5246483.html Model 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这 ...

  7. LeetCode题目(python)

    1.给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重复利用这个数组中同样 ...

  8. 深入理解java虚拟机(2)

    一.对象的访问 ----------------------------------------------------- 1.对象的访问与java栈.堆和方法区之间的关联关系. eg:Object ...

  9. 【Java】 Java常用的几个设计模式实例

    一.单例模式 public class SingletonDemo { public static void main(String[] args) { // } } class User1{//饿汉 ...

  10. 5月Linux市场Steam 份额在增长

    随着新的一个月的开始,Valve公布了上个月的软件/硬件调查数据.在2019年5月,Steam Linux的使用率按百分比略微上升. 上个月,运行Linux的Steam用户比例(根据有争议的Steam ...