递推DP(至少和至多之间的转换
题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种。
转换成抛N次至多连续有N个减去抛N次至多连续有K-1个1的情况 dp[i][k]表示抛i次至多连续有k个1的情况数;
转移方程:i<=k的时候有dp[i][k]=dp[i-1][k]*2 因为因为dp[i][k]表示抛i次至多连续有k个 i<=k的时候不会出现非法的情况
i>k的时候 如果i-j到i-1都是1 那么i=1就不可行 所以dp[i][k]=dp[i-1][k]-i-j到i-1都是1的情况数
i-j到i-1都是1的情况数:试想第i-j-1个位置应该是什么呢.很明显应该是F.如果是H那就会出现非法状态了.那在第i-j-1之前的位置呢.无论H和F都可以,只要不出现连续的H个数大于j的非法状态即可,就是dp[i-j-2][j]。
即将i-1到i-j-1的数都看作是"确定的一个数"所以情况数是dp[i-j-2][k];
然后将i==k+1的时候特判
题意:有三个兵种R,G,P,选取N个排成一列,要求G至少有M个连续的,R至多有K个连续的,问有多少种排列方式。
dp[i][4]的1,2,3表示第i个放R,G,P时最多有x个连续的G和y个连续的R的情况
这样就转换成了求 sum(dp[n][i])x=M y=N的情况减去sum(dp[n][i])x=M y=K的情况
dp[i][3]因为对RG没有影响所以递推公式始终为
dp[i][3]=sum(dp[i-1][1],dp[i-1][2],dp[i-1][3]);
i<=y时
dp[i][1]=dp[i][3];//R
i==y+1时
dp[i][1]=dp[i][3]-1;
i>y+1时
dp[i][1]=dp[i][3]-dp[i-y-1][2]-dp[i-y-1][3];
i<=x时
dp[i][2]=dp[i][3];//G
i==x+1时
dp[i][2]=dp[i-1][1]+dp[i-1][3]+dp[i-1][2]-1(1~x全为G的情况)
i>x+1时
dp[i][2]=dp[i][3]-dp[i-x-1][1]-dp[i-x-1][3];
递推DP(至少和至多之间的转换的更多相关文章
- Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)
有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...
- attack on titans(动态规划递推,限制条件,至少转至多方法,进击的巨人)
题目意思: 给n个士兵排队,每个士兵三种G.R.P可选,求至少有m个连续G士兵,最多有k个连续R士兵的排列的种数. 原题 Attack on Titans Time Limit: 2 Seconds ...
- 递推DP URAL 1017 Staircases
题目传送门 /* 题意:给n块砖头,问能组成多少个楼梯,楼梯至少两层,且每层至少一块砖头,层与层之间数目不能相等! 递推DP:dp[i][j] 表示总共i块砖头,最后一列的砖头数是j块的方案数 状态转 ...
- 递推DP URAL 1167 Bicolored Horses
题目传送门 题意:k个马棚,n条马,黑马1, 白马0,每个马棚unhappy指数:黑马数*白马数,问最小的unhappy值是多少分析:dp[i][j] 表示第i个马棚放j只马的最小unhappy值,状 ...
- 递推DP URAL 1260 Nudnik Photographer
题目传送门 /* 递推DP: dp[i] 表示放i的方案数,最后累加前n-2的数字的方案数 */ #include <cstdio> #include <algorithm> ...
- 递推DP URAL 1353 Milliard Vasya's Function
题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...
- 递推DP URAL 1119 Metro
题目传送门 /* 题意:已知起点(1,1),终点(n,m):从一个点水平或垂直走到相邻的点距离+1,还有k个抄近道的对角线+sqrt (2.0): 递推DP:仿照JayYe,处理的很巧妙,学习:) 好 ...
- 递推DP 赛码 1005 Game
题目传送门 /* 递推DP:官方题解 令Fi,j代表剩下i个人时,若BrotherK的位置是1,那么位置为j的人是否可能获胜 转移的时候可以枚举当前轮指定的数是什么,那么就可以计算出当前位置j的人在剩 ...
- 递推DP HDOJ 5328 Problem Killer
题目传送门 /* 递推DP: 如果a, b, c是等差数列,且b, c, d是等差数列,那么a, b, c, d是等差数列,等比数列同理 判断ai-2, ai-1, ai是否是等差(比)数列,能在O( ...
随机推荐
- Oracle11g安装出现时未能满足某些最低安装要求
需要开启C盘共享,才能检测硬件是否满足要求.cmd命令:net share c$=c::或者勾选全部忽略,继续下一步安装. 可参考https://blog.csdn.net/huazicomeon/a ...
- Visual Studio 展开和折叠代码快捷键
每个cs文件代码太多,总数找不到方法.每次都是手动一个一个方法折叠手疼,赶紧搜索折叠展开快捷键. Ctrl + M + O: 折叠所有方法 Ctrl + M + M: 折叠或者展开当前方法 Ctr ...
- Golang 单例模式 singleton pattern
在Java中,单例模式的实现主要依靠类中的静态字段.在Go语言中,没有静态类成员,所以我们使用的包访问机制和函数来提供类似的功能.来看下下面的例子: package singleton ...
- redis安装及遇到的坑-linux
获取Redis安装包“redis-4.0.8.tar.gz”,上传Linux服务器; 使用root用户解压: tar zxvf redis-4.0.8.tar.gz -C /usr/local/; 进 ...
- Android开发 互相调用模式之提供扩展类
此种方法适用于:比如你要让Android做一些事情,这些事用不到任何资源,在Android下用纯代码就能实现它,这样就可以在Android下写好,将它封装成一个方法,打成包按照下面的方式丢给Unity ...
- jQuery I
jQuery 两大特点: 链式编程:比如.show()和.html()可以连写成.show().html(). 隐式迭代:隐式对应的是显式.隐式迭代的意思是:在方法的内部进行循环遍历,而不用我们自己再 ...
- git(程序员的时光机)
git 是什么 最强大的分布式版本控制系统,没有之一 版本控制: 完成一项任务,最终的成果可能是经过中间修修修改n次得到的,在这n个版本之间的切换就叫版本控制. 集中式的版本控制svn,cvs缺点: ...
- C语言之联合体
联合union是一个能在同一个存储空间存储不同类型数据的类型 联合体所占的内存长度等于其最长成员的长度,也有叫做共用体 联合体虽然可以有多个成员,但同一时间只能存放其中一种 对于联合体来讲最基本的原则 ...
- CF450A 【Jzzhu and Children】
普通的模拟题这题用一个队列容器来模拟队列元素是pair类型的,first用来存每个小朋友想要的糖数,second用来存小朋友的序号,然后开始模拟,模拟出口是当队列迟到等于1时就输出当前队列里小朋友的序 ...
- NOIP2017 D2T3 题解
题面 这种数据范围不是乱搞dfs就是乱搞状压DP 首先应该通过任一方式求出a和b的值: 任意一条抛物线只用两头猪就可以确定,所以我们N^2枚举,并把在这两头猪的抛物线上的猪都存进状态state[i][ ...