import cv2
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.stats
%matplotlib inline

读入我们需要的图像

apple = cv2.imread("apple.jpg")
apple = cv2.resize(cv2.cvtColor(apple,cv2.COLOR_BGR2RGB),(200,200))
plt.imshow(apple)
plt.axis("off")
plt.show()

噪声

高斯噪声

简介

高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声

与椒盐噪声相似(Salt And Pepper Noise),高斯噪声(gauss noise)也是数字图像的一个常见噪声。

椒盐噪声是出现在随机位置、噪点深度基本固定的噪声,高斯噪声与其相反,是几乎每个点上都出现噪声、噪点深度随机的噪声。

正如上面的简介我们只要实现一个随机矩阵,矩阵中值总体来说符合高斯分布,与原图像想加,就可以实现高斯噪声了,python中的random提供了产生高斯随机数的方法,但是numpy提供了直接生成随机高斯矩阵的方法。

我们这里使用numpy即可

gauss = np.random.normal(mean,sigma,(row,col,ch))

因此我们可以得出产生高斯噪声的方式

def GaussieNoisy(image,sigma):
row,col,ch= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy.astype(np.uint8)
plt.imshow(GaussieNoisy(apple,25))
plt.show()

上图为施加sigma为25的高斯噪声的效果

椒盐噪声

相比高斯噪声,椒盐噪声的概念非常简单,即在图像中随机选点,使其为0或255

def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
row,col,ch = image.shape out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[coords] = 1
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[coords] = 0
return out
plt.imshow(spNoisy(apple))
plt.show()

滤波

算术均值滤波

算术均值滤波器即求某一范围内图像的均值,代替范围中心点的值,在前面已经实现过。

def ArithmeticMeanOperator(roi):
return np.mean(roi)
def ArithmeticMeanAlogrithm(image):
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] = ArithmeticMeanOperator(image[i-1:i+2,j-1:j+2])
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbArithmeticMean(image):
r,g,b = cv2.split(image)
r = ArithmeticMeanAlogrithm(r)
g = ArithmeticMeanAlogrithm(g)
b = ArithmeticMeanAlogrithm(b)
return cv2.merge([r,g,b])
plt.imshow(rgbArithmeticMean(apple))
plt.show()

几何均值滤波

几何均值公式如下

\[f(x,y) = [\prod_{(s,t)\in S_{x,y}}{g(s,t)}]^{\frac 1{mn}}
\]

def GeometricMeanOperator(roi):
roi = roi.astype(np.float64)
p = np.prod(roi)
return p**(1/(roi.shape[0]*roi.shape[1])) def GeometricMeanAlogrithm(image):
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] = GeometricMeanOperator(image[i-1:i+2,j-1:j+2])
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbGemotriccMean(image):
r,g,b = cv2.split(image)
r = GeometricMeanAlogrithm(r)
g = GeometricMeanAlogrithm(g)
b = GeometricMeanAlogrithm(b)
return cv2.merge([r,g,b])
plt.imshow(rgbGemotriccMean(apple))
plt.show()

谐波均值

谐波均值公式定义如下

\[ H = \frac{n} {\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}\ldots \frac{1}{x_n}}
\]

这里需要注意的是,谐波均值处理的数必须大于0,当x存在为0的数是,趋近于无穷,则H=0

因此我们此处当存在x大于0的数时,就返回0

def HMeanOperator(roi):
roi = roi.astype(np.float64)
if 0 in roi:
roi = 0
else:
roi = scipy.stats.hmean(roi.reshape(-1))
return roi
def HMeanAlogrithm(image):
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] =HMeanOperator(image[i-1:i+2,j-1:j+2])
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbHMean(image):
r,g,b = cv2.split(image)
r = HMeanAlogrithm(r)
g = HMeanAlogrithm(g)
b = HMeanAlogrithm(b)
return cv2.merge([r,g,b])
plt.imshow(rgbHMean(apple))
plt.show()

逆谐波均值

公式如下

\[f(x,y) = \frac{\sum_{(s,t)\in S_{xy}}{g(s,t)^{Q+1}}} {\sum_{(s,t)\in S_{xy}}{g(s,t)^{Q}}}
\]

因此使用python实现如下

def IHMeanOperator(roi,q):
roi = roi.astype(np.float64)
return np.mean((roi)**(q+1))/np.mean((roi)**(q))
def IHMeanAlogrithm(image,q):
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] = IHMeanOperator(image[i-1:i+2,j-1:j+2],q)
new_image = (new_image-np.min(image))*(255/np.max(image))
return new_image.astype(np.uint8)
def rgbIHMean(image,q):
r,g,b = cv2.split(image)
r = IHMeanAlogrithm(r,q)
g = IHMeanAlogrithm(g,q)
b = IHMeanAlogrithm(b,q)
return cv2.merge([r,g,b])
plt.imshow(rgbIHMean(apple,2))
plt.show()

图像的复原

下面我们将试着对加了高斯噪声和椒盐噪声的图像进行复原

spApple = spNoisy(apple,0.5,0.1)
gaussApple = GaussieNoisy(apple,25)
plt.subplot(121)
plt.title("Salt And peper Image")
plt.imshow(spApple)
plt.axis("off")
plt.subplot(122)
plt.imshow(gaussApple)
plt.axis("off")
plt.title("Gauss noise Image")
plt.show()

arith_sp_apple = rgbArithmeticMean(spApple)
gemo_sp_apple = rgbGemotriccMean(spApple)
plt.subplot(121)
plt.title("Arithmatic to spImage")
plt.imshow(arith_sp_apple)
plt.axis("off")
plt.subplot(122)
plt.imshow(gemo_sp_apple)
plt.axis("off")
plt.title("Geomotric to spImage")
plt.show()

arith_gs_apple = rgbArithmeticMean(gaussApple)
gemo_gs_apple = rgbGemotriccMean(gaussApple)
plt.subplot(121)
plt.title("Arithmatic to gsImage")
plt.imshow(arith_gs_apple)
plt.axis("off")
plt.subplot(122)
plt.imshow(gemo_gs_apple)
plt.axis("off")
plt.title("Geomotric to gsImage")
plt.show()

算术均值能略微去除椒盐噪声产生的点,几何均值效果却有些奇怪。

对于高斯噪声,二者的效果都非常弱

arith_sp_apple = rgbHMean(spApple)
gemo_sp_apple = rgbIHMean(spApple,3)
plt.subplot(121)
plt.title("H Mean to spImage")
plt.imshow(arith_sp_apple)
plt.axis("off")
plt.subplot(122)
plt.imshow(gemo_sp_apple)
plt.axis("off")
plt.title("IH mean to spImage")
plt.show()

arith_gs_apple = rgbHMean(gaussApple)
gemo_gs_apple = rgbIHMean(gaussApple,3)
plt.subplot(121)
plt.title("HMean to gsImage")
plt.imshow(arith_gs_apple)
plt.axis("off")
plt.subplot(122)
plt.imshow(gemo_gs_apple)
plt.axis("off")
plt.title("IHMean to gsImage")
plt.show()

如图,IHMEAN的效果要比Hmean好很多,即使是高斯造神也能达到良好的去噪效果

python数字图像处理(五) 图像的退化和复原的更多相关文章

  1. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

  2. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

  3. Win8 Metro(C#) 数字图像处理--1 图像打开,保存

    原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作.   Win8Metro编程中,图像相关 ...

  4. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  5. 初始----python数字图像处理--:环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  6. Win8 Metro(C#)数字图像处理--4图像颜色空间描述

    原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述  图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...

  7. python数字图像处理(5):图像的绘制

    实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可 ...

  8. python数字图像处理(11):图像自动阈值分割

    图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素 ...

  9. python数字图像处理(10):图像简单滤波

    对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子 ...

随机推荐

  1. 对vue的研究

    beforeDestroy 类型:Function 详细: 实例销毁之前调用.在这一步,实例仍然完全可用. 该钩子在服务器端渲染期间不被调用. 参考:生命周期图示 destroyed 类型:Funct ...

  2. Linux find过滤掉没有查看权限的文件

    参考:https://blog.csdn.net/sinat_39416814/article/details/84993424 https://www.jianshu.com/p/2b056e1c0 ...

  3. python-Exception异常使用

    Exception #自定义异常类 ,MyInputExcp继承Exception异常 class MyInputExcp(Exception): def __init__(self, lenght, ...

  4. Spring动态数据源-AbstractRoutingDataSource

    在分库分表的情况下,在执行SQL时选择连接不同的数据源(库)的思路:配置多个数据源加到动态数据源对象中,根据实际的情况动态切换到相应的数据源中. 如存放订单信息的有10个库,每个库中有100张表,根据 ...

  5. C语言的结构体的具体作用是?

    在实际问题中,一组数据往往具有不同的数据类型.例如,在学生登记表中,姓名应为字符型:学号可为整型或字符型:年龄应为整型:性别应为字符型:成绩可为整型或实型.显然不能用一个数组来存放这一组数据.因为数组 ...

  6. Json转换 在java中的应用

    Json转换辅助类比较多,比如谷歌的Gson,阿里的FastJson,Jackson.net.sf.json等等 用了一圈后,本人还是比较推荐用net.sf.json 这里就介绍一下net.sf.js ...

  7. 虚拟机CentOS7安装docker并搭建Gitlab私服

    一.下载安装虚拟机和CentOS7系统 这些流程比较简单不会有什么坑,这里不再阐述 二.安装docker 1.Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条件来验 ...

  8. easyui的datagrid里getSelections只能获取一行值???

    使用getSelections只能获取到一行的值,检查了半天是因为idField属性值写错,更正之后ok. 解决办法二:改为使用getChecked,idField写错无影响, 注: getSelec ...

  9. python学习之路---day16--面向对象

    面向对象及成员的基本总结复习一:先用一个实际例子说明类: class 类名: class Car: #__init__ :使我们在具体构造一个对象时,使这个对象有具体的属性,像有名字啊,价格等等这样的 ...

  10. 状压DP : [USACO06NOV]玉米田

    玉米田 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ ...