Codeforces 1097D (DP+分解质因数)
题目
分析
考虑\(n=p^q\)且p为质数的情况
设dp[i][j]表示经过i次变化后数为\(p^j\)的概率
则初始值dp[0][q]=1
状态转移方程为\(dp[i][j]=\sum{}\frac{1}{u+1}dp[i-1][u],u\in[j,q]\)
最终的期望值\(E(p^q)=\sum dp[k][j] ·p^j ,j \in [0,q]\)
那么如果n不是某个质数的q次方呢
把n分解质因数,\(n={p_1}^{q_1}{p_2}^{q_2} \dots {p_n}^{q_n}\)
对于每一个\({p_i}^{q_i}\),求出期望再相乘即可
注意逆元最好要预处理,否则常数略大,总时间复杂度\(O(\sqrt n+k \log n)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 205
#define maxk 10005
#define mod 1000000007
using namespace std;
inline long long fast_pow(long long x,long long k){
long long ans=1;
while(k){
if(k&1) ans=ans*x%mod;
x=x*x%mod;
k>>=1;
}
return ans;
}
inline long long inverse(long long x){
return fast_pow(x,mod-2);
}
long long n,k;
int cnt=0;
long long p[maxn];
int a[maxn];
void div(long long x){
long long i=2;
while(i*i<=x){
if(x%i){
i++;
}else{
p[++cnt]=i;
while(x%i==0){
a[cnt]++;
x/=i;
}
}
}
if(x!=1){
p[++cnt]=x;
a[cnt]=1;
}
}
long long inv[maxn];
long long dp[maxn];
long long dp_solve(long long p,int q){
memset(dp,0,sizeof(dp));
dp[q]=1;
for(int i=1;i<=k;i++){
for(int j=0;j<=q;j++){
long long tmp=0;
for(int u=j;u<=q;u++){
tmp=(tmp+dp[u]*inv[u+1]%mod)%mod;
}
dp[j]=tmp;
}
}
long long ans=0;
for(int i=0;i<=q;i++){
ans+=fast_pow(p,i)*dp[i]%mod;
ans%=mod;
}
return ans;
}
int main(){
scanf("%I64d %d",&n,&k);
div(n);
long long ans=1;
for(int i=0;i<=100;i++){
inv[i]=inverse(i);
}
for(int i=1;i<=cnt;i++){
ans*=dp_solve(p[i],a[i]);
ans%=mod;
}
printf("%I64d\n",ans%mod);
}
Codeforces 1097D (DP+分解质因数)的更多相关文章
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- 【bzoj4197】[Noi2015]寿司晚宴 分解质因数+状态压缩dp
题目描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 ...
- [CodeForces - 1225D]Power Products 【数论】 【分解质因数】
[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ...
- [Codeforces 1246B] Power Products (STL+分解质因数)
[Codeforces 1246B] Power Products (STL+分解质因数) 题面 给出一个长度为\(n\)的序列\(a_i\)和常数k,求有多少个数对\((i,j)\)满足\(a_i ...
- 【分解质因数】【树状数组】【快速幂】codeforces 2014 ACM-ICPC Vietnam National Second Round E. ACM
乘除都在150以内,分解质因数后发现只有35个,建立35个树状数组/线段树,做区间加.区间查询,最后快速幂起来. #include<cstdio> #include<cstring& ...
- Gym 101981J - Prime Game - [数学题][线性筛+分解质因数][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem J]
题目链接:http://codeforces.com/gym/101981/attachments 题意: 令 $mul(l,r) = \prod_{i=l}^{r}a_i$,且 $fac(l,r)$ ...
- java分解质因数
package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...
- 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)
1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...
随机推荐
- Spark2.0基于广播变量broadcast实现实时数据按天统计
package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import ja ...
- WebAuthorize(中间件对所有请求进行拦截)core只有通过添加中间件过滤请求方式 而非继承然后写特性的那种方式
一.WebAuthorize 1.项目名称 WebAuthorize 2.加个中间件 过滤请求. using Microsoft.AspNetCore.Builder; using Microsoft ...
- Kata Container 介绍
docker容器,性能高,不安全:VM虚拟机,安全性好,性能损耗大:Kata Container轻量级虚拟机的容器,即安全,性能也高. 开源容器项目Kata Containers,旨在将虚拟机(VM) ...
- bzoj2306 [Ctsc2011]幸福路径 倍增 Floyd
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2306 题解 倍增 Floyd. 令 \(f[i][j][k]\) 表示走了 \(2^i\) 步 ...
- Dubbo学习-4-dubbo简单案例-2-服务提供者和消费者配置
在上一篇帖子的基础上,开始使用dubbo来实现RPC调用: 根据dubbo的架构图可知,需要做以下几件事情: 1.将服务提供者注册到注册中心(暴露服务) (1)引入dubbo依赖, 这里依赖2.6.2 ...
- JS占位符替换
String.prototype.format = function() { if(arguments.length === 0) return this; var obj = arguments[0 ...
- Period POJ - 1961
Period POJ - 1961 时限: 3000MS 内存: 30000KB 64位IO格式: %I64d & %I64u 提交 状态 已开启划词翻译 问题描述 For each ...
- 170814关于Cookie的知识点
1.会话控制 Http协议 Http协议两个缺陷: 1.HTTP协议是纯文本的 2.HTTP协议是无状态的 服务器不能简单的通过HTTP协议来区分多次请求是否发自同一个用户 虽然通过H ...
- Step1 - How to: Define a Windows Communication Foundation Service Contract
https://msdn.microsoft.com/en-us/library/ms731835.aspx This is the first of six tasks required to cr ...
- AGC024C Sequence Growing Easy
题目大意 你开始有一个序列x 它所有项都是0 你有一个操作:x[i]=x[i-1]+1 问你至少几次操作可以让x序列变为给定的a序列 分析 老年人完全不会这种脑子题/kk........ 我们定义b[ ...