每日总结不能少!让自己的头脑好好清醒清醒,才不会犯那些所谓的低级错误!

Contest

A. ssoj3045 A 先生砍香蕉树

根据数据范围 \(m\le 1000,b\le 10000\),显然本题直接暴力枚举格点即可。没想到我为了优化代码推半天还推错了……

我最近做题有一个很主观的感知就是,我的复杂度估计很不准,数组大小估计也是。看来要好好反省一下。

DFS 遍历全图的复杂度是 \(O(m)\),DFS 枚举排列是 \(O(n!)\),DFS 枚举区间是 \(O(n^2)\),有单调性可以化为 \(O(n)\) 或 \(O(n\log n)\)。

BFS 复杂度与 DFS 差不多,主要是在栈空间上面的问题。

最短路 Floyd 复杂度 \(O(n^3)\),Dijkstra 复杂度 \(O(m\log m)\),SPFA 复杂度 \(O(nm)\),最小生成树 Kruskal \(O(m\log m)\)。

LCA 欧拉序上 ST 算法复杂度预处理 \(O(n\log n)\),每次询问 \(O(1)\)。

拓扑排序 \(O(n+m)\),强连通分量 Kosaraju \(O(n+m)\)(求后序遍历 dfn \(O(m)\),从 dfn 最大的顶点反向 DFS 为一个强连通分量;剩余点继续取 dfn 最大 DFS \(O(n)\))。

log 级别数据结构有 树状数组、线段树,并查集均摊 \(O(1)\)。线段树开 4 倍空间,常数大。

排序算法 \(O(n\log n)\)。

先背诵下来,再理解理解。

B. 草堆摆放 (restack)

FJ 买了一些干草堆,他想把这些干草堆分成 \(N\) 堆 (\(1\le N\le 100,000\)) 摆成一圈,其中第 \(i\) 堆有 \(B_i\) 数量的干草。不幸的是,负责运货的司机由于没有听清 FJ 的要求,只记住分成 \(N\) 堆摆成一圈这个要求,而每一堆的数量却是 \(A_i\) (\(1\le i\le N\))。当然 \(A_i\) 的总和肯定等于 \(B_i\) 的总和。FJ 可以通过移动干草来达到要求,即使得 \(A_i=B_i\),已知把一个干草移动 \(x\) 步需要消耗 \(x\) 数量的体力,相邻两个干草堆之间的步数为 1。请帮助 FJ 计算最少需要消耗多少体力才能完成任务。

与蓝书 P4 分金币同理。最终转化为求解中位数

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long int n, B[100005];
ll ans; int main() {
scanf("%d", &n);
for (int i=1, A; i<=n; ++i) scanf("%d%d", &A, &B[i]), B[i]+=B[i-1]-A;
sort(B+1, B+n+1);
for (int i=1, m=n+1>>1; i<=n; ++i) ans+=B[m]>B[i]?B[m]-B[i]:B[i]-B[m];
printf("%lld\n", ans);
return 0;
}

C. Elephants (slo)

对于一个 \(1-N\) 的排列 \(a\),每次你可以交换两个数 \(a_x\) 与 \(a_y\),代价为 \(m(a_x)+m(a_y)\)。若干次交换的代价为每次交换的代价之和。\(N\) 个 100 到 6500 的整数,按照某个顺序排列。现在要交换若干次,每次交换两个数的位置,使得变成目标顺序。 请问将 \(a\) 变为 \(b\) 所需的最小代价是多少。

D. 电路维修

目前想法是 Dijkstra 做最短路,但因为数据水 AC 了。实际上这么做是有问题的,因为一个节点可能被多次访问。

正解应该是在 deque 上做 BFS。维护双端队列,新入队的边如果边权为 0 加入队头,边权为 1 加入队尾。这样就没有什么问题了。

我真是疯了,数组开那么小还 debug 半天……

7 November in 614的更多相关文章

  1. 8 November in 614

    我开始看心灵鸡汤了-- 每当在书中读及那些卑微的努力,都觉得感动且受震撼.也许每个人在发出属于自己的光芒之前,都经历了无数的煎熬,漫长的黑夜,无尽的孤独,甚至不断的嘲讽和否定,但好在那些踮脚的少年,最 ...

  2. 6 November in 614

    Contest A. greet map,完了. B. gift map,完了. C. [Usaco2008 Nov Gold] 安慰奶牛 最小生成树.新边权设为原边权的两倍,再加上两端点的点权.完了 ...

  3. 5 November in 614

    Contest A. ssoj2964 交错的士兵 \(n\) 个数的排列,从左到右依次为 1, 2, -, \(n\).\(n\) 次操作,对于第 \(i\) 次操作,从左到右分成很多段,每段 \( ...

  4. [POJ1765]November Rain

    [POJ1765]November Rain 试题描述 Contemporary buildings can have very complicated roofs. If we take a ver ...

  5. We will be discontinuing the Nitrous Development Platform and Cloud IDE on November 14th, 2016.

    我表示我很难过 Nitrous We will be discontinuing the Nitrous Development Platform and Cloud IDE on November ...

  6. TIOBE Index for November 2015(转载)

    原文地址:http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html November Headline: Java once a ...

  7. 日常英语---七、[Updated November 14 at 4:10 PM PST] Scheduled Game Update - November 14, 2018(n.标准)

    日常英语---七.[Updated November 14 at 4:10 PM PST] Scheduled Game Update - November 14, 2018(n.标准) 一.总结 一 ...

  8. Multi-Cloud & Kubernetes: Cloud Academy November 2018 Data Report

    https://cloudacademy.com/research/multi-cloud-kubernetes-devops-cloud-academy-data-report-nov-18/ No ...

  9. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...

随机推荐

  1. Vue.js的列表数据的同步更新方法

    这次给大家带来Vue.js的列表数据的同步更新方法,Vue.js列表数据同步更新方法的注意事项有哪些,下面就是实战案例,一起来看一下. 数组的 push(),pop(),shift(),unshift ...

  2. apicloud地图、即时通讯、人脸识别登录、以及平时踩过得坑

    apicloud技术浅谈 导语 apicloud 的学习也有一段时间了,这是我个人的一些经验,和踩过的坑,希望对大家能有一些帮助. apicloud的知识准备 apicloud 是一个用原生的思想搭建 ...

  3. CentOS 7命令行安装GNOME、KDE图形界面(成功安装验证)

    来源:cnblogs.com/Amedeo  作者:Amedeo 正文 CentOS 7 默认是没有图形化界面的,但我们很多人在习惯了 Windows 的图形化界面之后,总是希望有一个图形化界面从而方 ...

  4. Python笔记(十七)_面向对象编程

    面向对象编程 概念:简称OOP,是一种程序设计思想:OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数 面向对象的设计思想:抽象出类class,根据类class创建实例对象instan ...

  5. Spring MVC处理

    1.首先,用户发送请求,DispatcherServlet会拦截请求,但DispatcherServlet收到请求后不进行处理,而对URL进行解析得到相应的URI(资源标识符). 2.Dispatch ...

  6. spring-第七篇之深入理解容器中的bean

    1.抽象bean与子bean 用于指定配置模板. 2.容器中的工厂bean 这种工厂bean必须实现FactoryBean接口,通过spring容器getBean()方法获取它时,容器返回的不是Fac ...

  7. spring-第二篇ApplicationContext国际化及事件机制

    1.ApplicationContext接口获取spring容器      ApplicationContext是BeanFactory接口的子接口,BeanFactory的常用实现类是Default ...

  8. KVM操作命令

    1.查看KVM虚拟机配置文件 Kvm虚机创建 例子 /home/work/kvm-host一下操作目录 qemu-img create -f qcow2 test-Ws.qcow2 10G Test- ...

  9. 2019 Multi-University Training Contest 1 - 1004 - Vacation - 二分 - 思维

    http://acm.hdu.edu.cn/showproblem.php?pid=6581 一开始想了好几个假算法.但是启发了一下潘哥,假如时间知道的话就可以从头开始确定各个车的位置.那么直接 \( ...

  10. chrome浏览器canvas画图不显示

    问题产生在学习cabvas给画布画图像的时候发现使用IE edge浏览器可以正常显示图像,而chrome则不行,经百度后知道是因为chrome浏览器会先加载javascript代码,之后才加载图片,这 ...